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ABSTRACT
We study the infrared (IR) emission from flared discs with and without additional optically
thin haloes. Flux calculations of a flared disc in vacuum can be considered a special case of
the more general family of models in which the disc is imbedded in an optically thin halo. In
the absence of such a halo, flux measurements can never rule out its existence because the disc
flaring surface defines a mathematically equivalent halo that produces the exact same flux at
all IR wavelengths. When a flared disc with height H at its outer radius R is imbedded in a
halo whose optical depth at visual wavelengths is τhalo, the system IR flux is dominated by the
halo whenever τhalo > (1/4)H/R. Even when its optical depth is much smaller, the halo can
still have a significant effect on the disc temperature profile. Imaging is the only way to rule
out the existence of a potential halo, and we identify a decisive test that extracts a signature
unique to flared discs from imaging observations.

Key words: radiative transfer – circumstellar matter – stars: formation – stars: imaging – stars:
pre-main-sequence – dust, extinction.

1 I N T RO D U C T I O N

Modelling the infrared (IR) radiation of pre-main-sequence
(PMS) stars has traditionally involved ‘classic’ geometrically-thin
optically-thick discs. This approach fails to produce many features
of observed spectral energy distributions (SEDs) in both T Tauri
stars (TTS) and Herbig Ae/Be stars (Haebes). One way out of this
problem is to supplement the disc emission with a surrounding op-
tically thin halo (e.g. Butner, Natta & Evans 1994; Miroshnichenko
et al. 1999, MIVE hereafter). A simpler alternative was proposed by
Chiang & Goldreich (1997, CG hereafter). The surface skin of any
optically thick object is, of course, optically thin. The emission from
the disc surface layer can become significant under certain flaring
conditions, and CG present SED fits of a number of TTS purely in
terms of flared discs. This proposal was extended to SED modelling
of Haebes by Chiang et al. (2001) and Natta et al. (2001).

While the CG model successfully solves the SED problem with
a simple physical explanation, recent high-resolution imaging ob-
servations of both TTS and Haebes reveal the presence of haloes,
ignored in the CG approach. Most striking is the case of GM Aur, a
classical TTS whose SED modelling was presented as evidence of
the success of the CG approach (Chiang & Goldreich 1999). Indeed,
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Hubble Space Telescope/Near Infrared Camera and Multi-Object
Spectrometer (HST/NICMOS) images by Schneider et al. (2003)
show a flared disc with radius of ∼300 au, but they also reveal the
presence of a surrounding tenuous envelope extending to a radius
of ∼1000 au. Using detailed Monte Carlo calculations, Schneider
et al. find that simplified models with a flared disc without an imbed-
ding halo fail to replicate the scattered light intensity pattern seen
in the NICMOS images. The addition of a halo is essential for suc-
cessful modelling of both the SEDs and the images. Similarly, HST
and ground-based imaging by Stapelfeldt et al. (2003) of the TTS
HV Tau C show a nearly edge-on flared disc imbedded in a more
extended nebulosity. From detailed model calculations, Stapelfeldt
et al. find that, although it is possible to fit the SED purely with a
flared disc, the flaring is unreasonably large and such models do not
reproduce the image adequately. They conclude that a flared disc
alone is an inadequate model and that an additional, extended com-
ponent to the circumstellar density distribution is needed to explain
the observations. Finally, from detailed modelling of flared disc
SEDs Kikuchi, Nakamoto & Ogochi (2002) conclude that haloes
are necessary supplements in explaining flat-spectrum TTS.

High-resolution observations of Haebes give similar evidence for
imbedding haloes. Combining space- and ground-based observa-
tions of HD 100546, the nearest Herbig Be star, Grady et al. (2001)
resolve the disc, which extends to 5 arcsec (∼500 au) from the
star and displays the elongation of inclined viewing with i = 49◦.
However, they also find that the disc is imbedded in a more ex-
tended halo (∼10-arcsec radius) that is roughly circular in shape
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and optically thin (background stars are visible through it). Polomski
et al. (2002) performed high-resolution ground-based observations
of a sample of Haebes whose mid-IR emission was claimed to
be disc-dominated by Hillenbrand et al. (1992). They find instead
that the emission is not confined to an optically thick disc but
originates in a more complex environment that includes large, ex-
tended dust envelopes. From analysis of Infrared Space Observa-
tory (ISO) data, Creech-Eakman et al. (2002) conclude that only
a subset of the Haebes they observe can be described purely in
terms of the CG model (notably, E. I. Chiang is a coauthor of this
study).

How can the SED of the same T Tauri star, GM Aur, be fitted suc-
cessfully with a flared disc both with a halo (Schneider et al. 2003)
and without one (Chiang & Goldreich 1999)? Is it at all possible to
distinguish between these two cases? What, if any, is the unique ra-
diative signature of each component? Obviously, imbedding a disc
in a tenuous halo with a very small optical depth is not going to affect
its emission appreciably. At which stage then does the halo assume
a significant role? Here we address these questions. In Appendix A
we derive general results for the emission from optically thin dust in
an arbitrary geometry. We apply these results to the surface layers
of flared discs in Section 2, and in Section 3 to haloes in which the
discs could be imbedded.

2 F L A R E D D I S C S

2.1 The CG layer and its equivalence to spherical halo

CG noted that the emission from the optically thin surface layer
of an optically thick disc, which has been neglected traditionally,
can become significant under certain flaring conditions. The stellar
radiation penetrates to an optical distance τV = 1 along a direction
slanted to the surface by angle α (Fig. 1). The optical depth of the
corresponding skin layer along the normal to the surface n̂ is α at
visual and αqν at wavelength ν, where qν = σν/σV and σV is the
dust cross-section at visual. In the case of a flat thin disc whose inner
radius is determined by dust sublimation, the grazing angle is

αflat = α∗

a
, where α∗ = 4

3π

R�

Rs
, a = ra

Rs
, (1)

where R� is the radius of the star, Rs is the dust sublimation radius
(equation A1) and ra is distance from the axis. Flaring is defined by
the radial profile of the disc height H (� ra) or, equivalently,

β = arctan
H

ra
� H

ra
. (2)

Figure 1. Model geometry and notations for a flared disc and its CG surface
layer. The unit vector ô points in the observer’s direction.

As is evident from Fig. 1, α = γ − β where tan γ = dH/dra;
therefore, the grazing angle of a flared disc is

α = a
dβ

da
. (3)

The CG surface layer serves as an effective optically thin disc atop
the underlying optically thick disc core, and its flux is obtained
from the volume integration listed in equation (A7). In the case
of face-on orientation, the optical depth of the CG layer obeys
σν

∫
nd dz = qνα; therefore, its flux at distance D is

FCG,ν = 2πR2
s

D2
qν

∫
Bν(T )αa da. (4)

Because the temperature profile of optically thin dust depends only
on distance from the radiation source, the geometry dependence of
this expression enters only from the radial variation of the grazing
angle α (reflecting the dust column variation). However, other ge-
ometries can produce an identical expression. For example, in the
case of spherical geometry the flux is controlled by the dimension-
less density profile η (equation A8) and the radial optical depth is
τν = σν

∫
nd dr . Denoting the optical depth at visual wavelengths

by τV, the flux is

Fsph,ν = 4πR2
s

D2
qντV

∫
Bν(T )ηy2 dy, (5)

where y = r/Rs. Because y and a enter only as integration variables
in the last two integrals, the two expressions are mathematically
identical if

η ∝ α(y)

y
and τV = 1

2

∫
α

da

a
. (6)

A minor point is that T in equation (4) is strictly a function
of y = a

√
1 + β2 rather than a (because temperature is controlled

by distance from the star); this slight difference can be ignored be-
cause β � 1 everywhere in the disc.

Scattering can be treated similarly and produces the same re-
sult because the only difference is that Bν(T) is replaced by Jν =
Lν/4πr2, another function of y (see equation A3). Therefore, there
is a complete equivalence between spherical haloes and the CG
surface layers of flared discs; either case defines a model with the
other geometry and the exact same flux. Specifically, equations (1)
and (6) show that a thin flat disc is equivalent to a spherical halo
with η ∝ 1/y2 and τV = (1/2)α∗. In the case of a flared disc, equa-
tions (3) and (6) show that the CG layer will produce precisely the
same flux as a spherical halo with

η ∝ dβ

dy
, τV = 1

2
[β(Rd) − β(Rs)]; (7)

in particular, the equivalent halo of a disc with flaring angleβ ∝ 1/ap

has density distribution η ∝ 1/yp+1. Conversely, given a spherical
halo, the flared disc with the same outer radius and

β(a) = β(1) + 2τV

∫ a

1

η(y) dy (8)

will produce the exact same flux from its CG surface layer.
Each disc defines a mathematically equivalent halo. Although this

equivalence was derived only for face-on viewing of the disc, it car-
ries to most inclination angles because the flux from optically thin
dust involves a volume integration (equation A7) and the observed
fraction of the disc surface layer remains largely intact as long as
internal occultation is not too significant. Similarly, the general anal-
ysis presented in Appendix A shows that the spherical idealization
is not essential for the halo geometry. The dust distribution can be
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flattened and even distorted into an irregular shape before severely
affecting the emerging flux.

These results resolve the paradox of successful SED fits for the
same star, GM Aur, with a flared disc both with a halo (Schneider
et al. 2003) and without one (Chiang & Goldreich 1999). The halo
contribution to the flux can be absorbed into the disc component by
re-adjusting the flaring law, enabling a successful SED fit without a
halo even though it is directly visible in imaging observations. The
problems Stapelfeldt et al. (2003) report with disc-only models of
HV Tau C find a similar explanation. The halo contribution to the
SED can be shifted to the disc, with the halo optical depth added
to the flaring angle (equation 7). This leads to unreasonably large
flaring, as Stapelfeldt et al. find. The same problem was encountered
by Kikuchi et al. (2002) in modelling flat-spectrum TTS. The halo
optical depth in these sources is sufficiently high that they cannot
be substituted by discs with realistic flaring.

In addition to explaining the shortcomings of disc-only models in
these specific cases, the equivalence between haloes and CG layers
has two important broad consequences, as follows.

(i) When the disc is imbedded in a halo that radiates more than
its CG layer, the halo becomes the dominant component of the IR
flux. This happens when the halo contains more dust than the halo-
equivalent of the disc. From equations (2) and (7), the IR radiation
from the system is dominated by the halo contribution whenever

τhalo >
1

4

H (Rd)

Rd
(9)

where τhalo is the optical depth across the halo at visual wavelengths
(2τV for spherical haloes).

(ii) It is impossible to distinguish the CG layer of a flared disc
from a halo with flux measurements. Only imaging can produce an
unambiguous signature of the CG layer.

2.2 Images

The brightness contours of face-on flared discs are concentric circles
centred on the star. Inclined viewing changes the contours substan-
tially. Consider the intensity of radiation scattered from the CG
surface layer. It obeys

I ∝ (τ ô)

r 2
(10)

where r is the distance to the star and (τ ô) is the optical depth to-
ward the observer at the scattering point (equation A2). Both factors
introduce distinct image asymmetries.

The fundamental reason for image distortion by inclination is that
the same projected distance from the star corresponds to widely dif-
ferent locations on the surface of the disc. On that surface, contours
of equal distance from the star are circles of radius ra. When viewed
face-on from distance D, each contour appears as a concentric circle
of radius θa = ra/D, as seen in the top image in Fig. 2. At inclination
viewing angle i to the disc axis, the contour is no longer circular. Ab-
sent flaring, the contour becomes an ellipse centred on the star with
major axis 2θa and minor axis 2θa cos i, aligned with the projection
of the disc axis on the plane of the sky. Flaring raises the contour to
height H = ra tan β above the equatorial plane (Fig. 1), and the star
is shifted toward the observer along the minor axis by θa tan β sin i. A
point on the contour at position angle φ from the near side of the mi-
nor axis is observed at displacement θ = θa g(φ) from the star, where

g(φ) = [(tan β sin i − cos i cos φ)2 + sin2 φ]1/2. (11)

These contours are shown in the bottom image of Fig. 2. The off-
centre position of the star on the minor axis creates an asymmetry

Figure 2. Points on the surface of a flared disc at equal distance from the
star lie on a circle centred on the disc axis. The circle retains its shape in
pole-on viewing but is deformed into an off-centre ellipse (equation 11) in
viewing from inclination angle i.

such that the far and near portions of this axis obey θfar/θnear =
cos(i−β)/cos(i + β). Because β increases with θa, this asymmetry
increases with distance from the star.

At observed displacement (θ, φ) from the star, a point on the
surface of the disc is located at r � ra = Dθ/g(φ). At that point
the optical depth of the CG layer toward the observer is (τ ô) =
qνα/o(φ), where

o(φ) = n̂ · ô = cos i cos γ − sin i sin γ cos φ. (12)

Therefore, the scattering image obeys

I (θ, φ) ∝
[

g(φ)

θ

]2
α

o(φ)
. (13)

In this expression, both α and γ are determined at the location ra =
Dθ/g(φ) on the disc surface. A power-law grazing angle α ∝ 1/rp

a

produces the image I(θ, φ) ∝ [g(φ)/θ ]2+p/o(φ). This expression
and the resulting brightness contours explain the results of Monte
Carlo scattering calculations for flared discs (Whitney & Hartmann
1992; Wood et al. 1998). Fig. 3 shows the scattering images at three
viewing angles of a flared disc with the parameters suggested for
AB Aur by Dullemond, Dominik & Natta (2001).

The images produced at emission wavelengths are handled in
complete analogy. The only change is the replacement of r−2 by the
temperature T , i.e., another function of r, modifying the dependence
of brightness on g(φ)/θ .

2.2.1 Image asymmetry

Brightness contours not subject to rim occultation are ellipses with
eccentricity e = cos i that directly determines the inclination angle
irrespective of the flaring profile. The images shown in Fig. 3 possess
an additional deviation from circular symmetry, unique to flaring
and conveniently measured by the brightness at diametric locations
across an axis through the star

A(θ, φ) = I (θ, φ + π ) − I (θ, φ)

I (θ, φ + π ) + I (θ, φ)
. (14)
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Figure 3. Viewing at inclination angles i = 2◦, 45◦ and 65◦ of radiation
scattered off the surface of a flared disc with 3-arcsec radius and constant
grazing angle α = 4.9◦. For each i, the left panel shows the image with
brightness contours, the right panel the asymmetry factor A (equation 14)
along three azimuthal directions, shown in the top-left panel, whose angles
are designated from the observer’s direction. The asymmetry parameter van-
ishes along the major axis (φ = 90◦) at all inclination angles and along any
axis at i = 0◦ and 90◦. For flat discs, A is identically zero at all inclination
angles.

This asymmetry parameter vanishes for flat discs at all inclination
angles, and for pole-on and edge-on viewing irrespective of the flar-
ing. However, at intermediate inclination angles, flaring introduces
substantial asymmetry, as is evident from Fig. 3.

Non-vanishing A is the hallmark of inclined flared discs because
it measures the displacement of the isophote centres from the peak
brightness position. Its systematic variation with azimuthal angle
easily distinguishes it from deviations from the perfect geometry of
idealized models or noise in the data. Each flaring profile produces
its own characteristic signature A. For example, it is easy to show
that the constant grazing angle α used in Fig. 3 gives A � tan β tan i
along the minor axis. Therefore, measuring A determines the flaring
profile once the inclination is determined from the eccentricity of
the brightness contours.

3 H A L O - I M B E D D E D D I S C S

The results of the previous section show that flux calculations of
a flared disc in vacuum can be considered a special case of the
more general family of models in which the disc is imbedded in an
optically thin halo. In the CG case, the ‘halo’ is the disc surface
layer, fully determined from the flaring geometry. This layer pro-
vides the same IR emission and heating of the underlying optically
thick core as its equivalent halo. Therefore, a study of the general
halo-imbedded-disc problem contains every possible CG model of

Figure 4. Geometry of the halo-imbedded-disc model; a flat geometrically-
thin optically-thick disc extends from the stellar surface to radius Rd. An
optically thin spherical halo extends from the dust sublimation radius Rs to
Rh. The small pillbox at the disc surface serves as a Gaussian surface for
flux conservation.

flared discs while also covering all cases in which the disc is indeed
imbedded in a dusty halo whose optical depth exceeds the bound in
equation (9).

Consider a star surrounded by a geometrically thin passive disc
and a dusty halo (Fig. 4). We study the case of a flat disc and a spher-
ical halo, simplifications that enable us to derive analytical results
and broad conclusions that offer important insight. These simplifi-
cations do not cause any serious limitations. As noted previously,
the halo geometry can be distorted considerably without much im-
pact on the outcome. Also, because only the optically thick core of
the disc enters into considerations, its only relevant property is its
temperature distribution; the surface shape is immaterial. Indeed,
Wolf, Padgett & Stapelfeldt (2003) present a detailed model calcu-
lation of a flared disc imbedded in an envelope pinched around the
equatorial plane, and their results fully conform to our conclusions.

The halo extends from the inner radius Rs to some outer radius
Rh = YRs. Thanks to scaling, instead of these radii we can specify
the dust temperature on each boundary (see Appendix A). The halo
is fully characterized by its density profile η(y) (equation A8) and
optical depth τV; only τV � 1 is relevant in TTS and Haebes because
the star is always visible. Because of its potentially large optical
depth, the disc can extend inside the dust-free cavity where its optical
depth comes from the gaseous component. The geometrically-thin
disc assumption implies that the disc temperature varies only with
radius, vertical temperature structure is ignored. This temperature
is calculated from radiative flux conservation through the Gaussian
surface in the shape of a small pillbox shown in Fig. 4. We denote
by H the radiative flux entering the pillbox from above, including
both the stellar and diffuse components. Then

σ T 4 − 2π

∫
Bν(T )E3

(
τD
ν

)
dν +

∫
2π

µIνe−τD
ν /µ d� dν = H, (15)
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where E3 is the third exponential integral, τD
ν is the disc vertical

optical depth and µ is the cosine of the angle from the disc normal.
The first two terms on the left are the disc contribution to the upward
flux, the third is the contribution of local intensity transmitted up-
ward through the disc. When the disc is optically thick at frequencies
around the peak of Bν(T)(τD

ν 
 1 for ν ∼ kT/h), the second and
third terms can be neglected, leading to the standard expression for
disc temperature (e.g. Friedjung 1985; Kenyon & Hartmann 1987).
We assume this to be the case everywhere in the disc, an assumption
that we check for self-consistency in all our model calculations.

With its temperature derived, the disc emission is calculated from
Bν(T)[1 − exp(−τD

ν /µ)]. Because the disc is optically thick around
the Planckian peak at all radii, the self-absorption factor can be ne-
glected in the calculation of the disc overall bolometric flux. Then
Fdisc(D, i), the disc flux observed at distance D and inclination i,
is proportional to cos i, reflecting the variation of projected area.
This proportionality remains largely unaffected by the envelope at-
tenuation because the short wavelengths, the main contributors to
the bolometric flux, emanate from close to the star so that their
path-length is approximately isotropic. We denote by Ldisc the disc
contribution to the overall luminosity L and by Lsph the contribu-
tion of the (halo + attenuated stellar) spherical component. The
corresponding flux components are then

Fdisc(D, i) = Ldisc

2πD2
cos i, Fsph(D) = L sph

4πD2
(16)

and the overall flux is

F(D, i) = Fdisc(D, 0) cos i + Fsph(D) = L

4πD2

1 + 2x cos i

1 + x

where x = Ldisc/Lsph. The standard ‘bare’ disc has Ldisc = 1
4 L

(Kenyon & Hartmann 1987), therefore in this case x = 1
3 . Larger

fractions can occur when the disc is imbedded in a halo because of
the heating effect of the diffuse radiation, discussed below.

We performed detailed model calculations with the code DUSTY

Ivezić, Nenkova & Elitzur (1999) which takes into account the en-
ergy exchange between the star, halo and disc, including dust scat-
tering, absorption and emission. Because its optical depth is typi-
cally τV � 1, the halo is transparent to the disc emission in all the
models we consider and we neglect the disc effect on the halo. In
all the calculations, the spectral shapes qν of the grain absorption
and scattering coefficients are those of standard interstellar mix, the
sublimation temperature Ts = 1500 K. The spectral shape of the
stellar radiation is taken from the appropriate Kurucz (1994) model
atmosphere.

3.1 Temperature profiles

The heating rate of a thin flat disc by the stellar radiation at r 
 R�

is

H∗ = 2Fs

3π

R�

Rs

1

a3
, (17)

where Fs is the stellar flux at Rs and a = ra/Rs, with ra being the
distance from the axis (Friedjung 1985). This result reflects the 1/a2

decline of the stellar solid angle and the 1/a variation of the grazing
angle, yielding disc temperature variation T ∝ a−3/4. Natta (1993)
noted that imbedding the disc in a dusty halo can significantly affect
its temperature even at small halo optical depths (see also D’Alessio,
Calvet & Hartmann 1997, for the effect of optically thick haloes).
With a simple model for scattering at a single wavelength Natta
found that the disc temperature law becomes T ∝ a−(1+p)/4 if the
halo density profile is η ∝ y−p.

Figure 5. Top: Temperature profiles of a disc when heated only by a central
star with T� = 10 000 K (full line), and when imbedded in a spherical dusty
halo with τV = 0.1 or 1, as marked. The halo starts at dust sublimation
Ts = 1500 K and its density profile is ∝ r−2. The temperature profile of the
halo is also shown in each case. Bottom: The fractional contributions of the
halo and (attenuated) stellar components to heating of the disc

Our calculations confirm this important point. Fig. 5 shows the
temperature profile for a disc around a T� = 10 000 K star when
‘bare’ and when imbedded in a spherical halo with η ∝ y−2 and
τV = 0.1 and 1.1 Even though a halo with τV as small as 0.1 is
almost transparent to the stellar radiation, it still causes a large
rise in disc temperature. As is evident from the bottom panel, the
halo contribution to the disc heating overtakes the stellar contribu-
tion inside the dust-free cavity and dominates completely once the
dust is entered. Wolf et al. (2003) present a similar figure for their
model.

A dusty envelope with τV = 0.1 intercepts only about 10 per
cent of the stellar luminosity while the disc intercepts 25 per cent
of that luminosity. So how can the halo dominate the disc heating?
The reason is that direct heating of the disc by the star occurs pre-
dominantly at small radii. The disc absorbs more than 90 per cent
of its full stellar allotment within 10R� while its entire remaining
area, even though so much larger, absorbs only 0.025L. From equa-
tion (A1), the halo starts at Rs ∼ 100 R�, where H∗ has already
declined to ∼10−6 of its value at the stellar surface. In contrast, the
halo emission is isotropic, therefore half of the radiation it intercepts
is reradiated toward the disc, greatly exceeding the direct stellar
contribution. Further insight can be gained from the approximate

1 The addition of a halo can only raise the disc temperature, yet Fig. 5
shows that our calculated profile for τV = 1 dips slightly below that of the
bare disc at a � 0.2. This happens because we neglect the disc emission
in the calculation of the halo temperature. The error introduced by this
approximation is of the order of 2 per cent when τV = 1, and even less
at smaller τV.
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solution presented in Ivezić & Elitzur (1997, IE hereafter) for radia-
tive transfer in spherical symmetry. From equations (20) and (B4)
of IE it follows that disc heating by a halo with τV � 1 and η ∝ y−p

is roughly

Hh = 3Fs

8

p − 1

p + 1
τV ×

{
1 a < 1

1/a1+p a > 1
(18)

when p > 1; when p = 1 the factor (p − 1)/(p + 1) is replaced by
1/(2 ln Y). This yields T ∝ a−(1+p)/4, corroborating Natta’s result
and extending its validity beyond the single-wavelength scattering
approximation she employed. The temperature profile is similar to
that of a bare disc when p = 2 but more moderate when p < 2.
More importantly,

Hh

H∗

∣∣∣∣
a=1

= 9π

16

p − 1

p + 1

Rs

R�

τV. (19)

Also, because Rs ∼ 100 R�, the halo dominates the heating at a = 1
for τV as small as 0.02 when p = 2. As τV increases, the halo domi-
nance of the heating moves inside the cavity. There the halo heating
remains approximately constant while the stellar heating varies as
a−3. Therefore, stellar heating dominates only at a � (60τV)−1/3, at
larger distances the halo takes over. This explains the results pre-
sented in the lower panel of Fig. 5 as well as fig. 9 in Wolf et al.
(2003).

The figure also shows the temperature profile of the halo. This
profile is largely independent of τV, varying roughly as y−2/(4+n)

Figure 6. Sample SEDs for halo-imbedded discs around stars with T� = 10 000 K. The halo starts at Rs where Ts = 1500 K and extends to 1000 Rs, with
density profile η and optical depth τV as indicated. The disc starts at the stellar surface and extends to the radius Rd set by the edge temperature Td = 25 K (see
Table 1). Each SED is normalized with the bolometric flux Fbol = F(D, i) of the appropriate viewing angle (see equation 16). Top row: The SEDs for pole-on
viewing. Full lines denote the overall flux, dotted lines the spherical (halo + attenuated stellar) component and dashed lines the disc component. The thick
dot-dashed line is the flux from a face-on ‘bare’ disc in the absence of an imbedding halo. It is omitted in the other rows. Mid row: The same models viewed at
inclination angle i = 85◦. Bottom row: Variation of the overall SED with viewing angle i. Results for i < 70◦ are barely distinguishable from i = 0◦.

when the long-wavelength spectral shape of the dust absorption
coefficient is qν ∝ νn. The important property evident in the fig-
ure is that the disc is much cooler than the envelope at all radii at
which both exist and can also contain cooler material in spite of
being much smaller, with far reaching consequences for the system
radiation.

3.2 Spectral energy distributions

From equation (16), the fractional contribution of the disc to the
overall bolometric flux is

ρ = Fdisc

Fdisc + Fsph
= 2x cos i

1 + 2x cos i
. (20)

Face-on orientation gives the maximal ρ = 2x/(1 + 2x) and the
standard ‘bare’ disc, with x = 1

3 , has ρ � 2
5 . We introduce the nor-

malized SED fν = Fν/
∫

Fν dν, with similar, separate definitions
for the disc and spherical components of the flux. Then

fν = ρ fν,disc + (1 − ρ) fν,sph. (21)

Because the disc flux obeys Fν,disc(i) = Fν,disc(0)×cos i for the range
of parameters considered here, fν,disc is independent of the viewing
angle i, and the entire i dependence of the SED comes from the
mixing factor ρ.

Fig. 6 shows sample SEDs for some representative models. The
haloes extend from Rs to 1000 Rs, with density profiles and overall
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Table 1. Derived parameters for the models whose SEDs
are presented in Fig. 6. The luminosity ratio of the compo-
nents is x = Ldisc/Lsph and the disc radius is Rd = YdRs,
set from the requirement Td = 25 K. A ‘bare’ disc
(τV = 0) has x = 1

3 and Yd = 18.

τV = 0.1 τV = 1
x Yd x Yd

r−1 0.43 190 1.33 400
r−2 0.47 85 1.56 135

optical depths as indicated. The behaviour of SEDs for spherical
shells was discussed in IE and, because the halo emission is un-
affected by the imbedded disc, the SEDs plotted as dashed lines
need no further discussion. The disc, on the other hand, is strongly
affected by the halo as is evident from contrasting each disc SED,
plotted as long-dashed line, with what it would have been in the
absence of a halo (dot-dashed line). The two curves are identical
within the first bump around 1 µm, caused by the stellar heating.
In the absence of a halo, the disc SED drops from that peak as
λFλ ∝ λ−4/3. However, halo heating of the outer regions of the
disc generates the second broad bump of disc radiation, which
is almost two orders of magnitude higher than the ‘bare’ disc
emission.

The halo heating effect is also evident from other disc properties.
The discs in these models start at the stellar surface and extend to
a radius Rd where the temperature is Td = 25 K. In the absence of
a halo, this temperature would be reached at Yd = Rd/Rs = 18. As
Table 1 shows, heating by even a tenuous halo with τV = 0.1 pushes
this radius out by almost a factor of 5 for the steep density profile
r−2 and another factor of 2 for the flatter r−1 profile, which spreads
the heating further away from the star. The impact of halo heating
increases with τV, pushing Rd further out still. Similarly, the disc
luminosity, xL/(1 + x), is only 0.25L in the absence of a halo but
increases as the halo directs more radiation toward it to the point
that it becomes 0.6L when τV = 1.

Although it is more compact, the disc can become the stronger
emitter at long wavelengths so that the overall SED is dominated
by the halo at IR wavelengths and by the disc at submm and
mm wavelengths. This role reversal affects also the wavelength
behaviour of images. Fig. 7 shows a series of images at various
wavelengths for a sample model. At IR wavelengths the image is
dominated by the halo, displaying the size variation discussed in
Appendix A. The 0.6-µm image is dominated by scattering, and
the λ � 5 µm images reflect dust emission, leading to size in-
crease with wavelength. The disc emerges at 17 µm and dominates
the λ � 100 µm images. The finite beam size and dynamic range
of any given telescope could result in an apparent size decrease
between 10 and 100 µm in this case. Such an effect has indeed
been discovered in the Haebes MWC 137, whose observed size de-
creases between 50 and 100 µm (di Francesco et al. 1994, 1998).
A switch from envelope to disc domination provides a simple ex-
planation for this puzzling behaviour. No single dust configuration
can explain such a decrease, a conclusion reached already in MIVE
and further affirmed by the results of Appendix A. Di Francesco
et al. (1998) suggest that this behaviour might reflect multiple,
rather than singular, sources of heating but the results of Appendix
A show the inadequacy of this conjecture. The region heated by
any single source displays an increase of observed size with wave-
length, and the superposition of multiple heating sources preserves
this behaviour. The opposite trend is possible only when the den-

Figure 7. Images at various wavelengths of a halo-imbedded disc around
a star with T� = 10 000 K. The halo starts at Rs where Ts = 1500 K and
extends to 1000 Rs, with density profile η ∝ y−2 + 0.05y−1 and τV = 0.6.
The disc starts at the stellar surface and extends to radius Rd set by Td = 25 K.
The angular scale corresponds to bolometric flux Fbol = 10−10 W m−2. The
viewing inclination angle is i = 76◦.

sity distribution contains two distinct components: one optically
thick, cool and compact; the other optically thin, warmer and more
extended.

A similar effect was detected also in the dust-shrouded main-
sequence star Vega. Van der Bliek, Prusti & Waters (1994) find that
its 60-µm size is 35 ± 5 arcsec, yet 850-µm imaging by Holland
et al. (1998) produced a size of only 24 × 21 arcsec2 ± 3 arcsec. So
the dust distribution around Vega, too, could contain both spherical
and disc components with the switch from halo dominance to disc
dominance occurring somewhere between 60 and 850 µm. Indeed,
imaging at 1.3 mm by Willner et al. (2002) has revealed the presence
of the disc.

The calculation of the disc emission contains two free parame-
ters, involving the temperature and optical depth at the disc edge.
The disc outer radius Rd determines its lowest temperature Td and a
corresponding Planck-peak wavelength. While shorter wavelengths
are emitted from a range of disc radii, all longer wavelengths orig-
inate from the edge of the disc. The resulting effect can be seen in
Fig. 8, which shows two representative values of Td. By the model
assumptions the disc must be optically thick at the local Planck-
peak wavelength everywhere, ∼350 µm at Td = 25 K. As long as
the disc edge remains optically thick also at longer wavelengths, the
emission follows the Rayleigh–Jeans profile fν,disc ∝ ν2. Once the
disc edge becomes optically thin, the SED switches to the steeper
decline fν,disc ∝ ν2σν at longer wavelengths. The break in the disc
SED is controlled by the optical depth of the disc edge, which we
specify at 350 µm. Fig. 8 shows also the effects of varying τ350 from
its smallest value τ350 ∼ 1 to a value sufficiently large that the edge
is optically thick at all the displayed wavelengths.
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Figure 8. The effect on the SED of varying the temperature (Td) and 350 µm
optical depth (τ350) of the disc outer edge. The displayed model has τV = 0.5
and η ∝ r−2. The viewing angle is 85◦. Dashed lines correspond to τ350 = 1,
and full lines to τ350 sufficiently large that the disc edge remains optically
thick at all displayed wavelengths.

3.2.1 The disc inner radius

The bottom panel of each model in Fig. 6 shows the variation of the
overall SED with viewing angle i. The entire variation comes from
the mixing factor ρ (see equations 20 and 21). Because the param-
eters x and i enter only in the product x cos i but not separately, the
SED is subject to a degeneracy; systems viewed at different incli-
nation angles will have the same SED if they have the same xcos i
in addition to all other properties. Because of the rapid decline with
distance of the radiation absorbed from the star (cf. equation 17),
the disc luminosity, i.e. x, has a steep dependence on its inner radius
Rin. Moving the disc inner edge from R� to only 2 R� removes 56 per
cent of the stellar luminosity intercepted by the disc; 3 R� results in
a 72 per cent removal. Such central holes reduce x but do not impact
any other relevant property because they remove only the hottest
disc material whose contribution to the overall flux is negligible in
comparison with the stellar component.

Fig. 9 plots contours in the i–Rin plane of constant mixing factor
ρ. It shows, for example, that the SEDs presented in Fig. 6 for i =
70◦ would be the same for systems viewed at i = 35◦ if the disc
inner radius is increased from 1 R� to 2.2 R� in the τV = 0.1 case
and 6 R� for τV = 1. Although the sizes of these holes cannot be
determined from SED modelling of single stars, from statistical ar-
guments MIVE conclude that their existence is essential to produce
a plausible distribution of inclination angles.

3.2.2 Flared discs without haloes

Thanks to the CG layer–halo equivalence, each model presented here
describes also a disc with no halo and with the flaring angle defined
by equation (8) from η and τV. In particular, the SEDs presented
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Figure 9. Contours of fixed mixing coefficient ρ (equation 20), as marked.
The SEDs are the same as those presented in Fig. 6 for i = 70◦ and 85◦
when the disc inclination i and its inner radius Rin vary together along each
of the plotted curves. The contours are virtually the same for the r−1 and
r−2 halo density profiles.

for η ∝ 1/y2 haloes describe also flared discs without a halo and
with α ∝ 1/a; those with η ∝ 1/y cover flared discs with constant
grazing angle α (β ∼ ln a). The equivalence strictly holds only for
discs and haloes of the same size. However, the models presented
would be little affected if each halo was truncated at Rd because that
would only remove halo emission at long wavelengths where the
SED is dominated by the disc anyhow. Because the flaring angle
of each equivalent disc reaches 2τV at its outer edge, haloes whose
optical depths require excessive flaring cannot be realized with discs
only. This was the problem recognized by Stapelfeldt et al. (2003)
and Kikuchi et al. (2002).

The equivalence holds only for the SED. High-resolution obser-
vations would produce widely different images for each halo and its
equivalent flared disc, except when the latter is viewed face-on.

4 D I S C U S S I O N

The results of Section 2.1 show that every disc imbedded in a halo
with τV � 1/2 can be replaced by a flared disc without a halo
and with an identical flux. This mathematical degeneracy explains
the success of SED modelling with disc alone a system such as
GM Aur (Chiang & Goldreich 1999) even though the halo was
subsequently discovered in imaging observations (Schneider et al.
2003). It also explains why such modelling runs into difficulties and
requires excessive flaring when the haloes have larger τV, as is the
case in HV Tau C (Stapelfeldt et al. 2003) and flat-spectrum TTS in
general (Kikuchi et al. 2002).

Discs generally do not exist in pure vacuum. Equation (9) de-
fines the circumstances under which the surrounding dust becomes
the dominant component of the IR flux. Even at smaller τV, when
not dominating the overall flux, the halo can still dominate the disc
heating and make a strong impact on its temperature profile (Sec-
tion 3.1). Ignoring the surrounding material can produce misleading
results regarding the disc properties, such as its flaring profile.

In spite of the attractiveness of the flared disc as a simple, physical
model without any additional components, imaging observations
give irrefutable evidence for the existence of extended haloes in
PMS stars. The origin of these haloes has not been studied yet.
Stapelfeldt et al. (2003) suggest that a replenishment process, either
continued infall from the surrounding ISM or a dusty outflow from
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the source itself, is operating. It is noteworthy in this regard that
accretion with the small rates of ∼ 10−8 M� yr−1 has been deduced
from ultraviolet spectra of both Haebes (Grady et al. 1996) and
TTS (Valenti, Basri & Johns 1993; Gullbring et al. 1998; Lamzin,
Stempels & Piskunov 2001), and is consistent with haloes that have
τV ∼ 0.1(MIVE). These low rates cannot correspond to the main
accretion build-up of the star but rather a much later phase, involving
small, residual accretion from the environment. The corresponding
accretion luminosities are only ∼0.1 L�, justifying their neglect in
our calculations.

In addition to the CG layer–halo equivalence, our results reveal
numerous degeneracies that underscore the severe limitations of at-
tempts to determine the dust morphology from SED analysis without
imaging observations. The SED of a halo-imbedded disc remains
the same when the viewing angle and the size of the disc central
hole vary together, as shown in Fig. 9. From the results of Appendix
A, the SED of a spherical shell with power-law density profile 1/rp

displays a dependence on p only when p � 2.6, and then only in
the spectral region λ � λout. All other regions of p and λ produce
the same universal behaviour Fν ∝ ν2σν (Appendix A4). The dust
optical properties introduce additional degeneracies. The results of
Appendix A4 show that the frequency dependence of σν and the
radial dependence of the density profile can be interchanged on oc-
casion without affecting the SED. The fundamental reason for all
these degeneracies is that the flux from an optically thin source
involves a volume integration (equation A7) that tends to remove
much of the dependence on the underlying morphology. Although
the specific degeneracies we uncovered involve spherical geometry,
the general analysis in Appendix A shows that the spherical ideal-
ization is not essential. The dust distribution can be flattened and
even distorted into an irregular shape before severely affecting the
results.

These degeneracies make it impossible to determine the geometry
from a fit to the SED alone without additional input. Only imaging
can trace the actual density distribution, and scattering provides a
more faithful presentation because, unlike emission which involves
also the dust temperature, it involves only the density distribution.
Reliance on SED modelling alone can produce misleading results,
as was the case for the parameters of the flared disc in GM Aur.
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A P P E N D I X A : O P T I C A L LY T H I N D U S T

Consider a cloud heated from inside by a star of radius R� and
effective temperature T� (Fig. A1). The star clears out a dust-free
cavity of radius Rs, determined by dust sublimation T(Rs) = Ts.
When the dust is optically thin, the cavity radius can be found from

Rs

R�

= 1

2

[
σ̄ (T�)

σ̄ (Ts)

]1/2 (
T�

Ts

)2

(A1)

where σ̄ (T ) is the Planck average at temperature T of the ab-
sorption cross-section σν(IE). With standard interstellar dust and
Ts = 1500 K, the cavity radius obeys Rs/R� � 100 at a typical
Haebes temperature T� = 10 000 K. In TTS, on the other hand, the
dust is much closer to the star; Rs/R� is only 15 at T� = 5000 K

r 

b

z

T = Ts 
T = Tout

Rs

Figure A1. A star imbedded in a cloud clears out a dust-free cavity of
radius Rs, corresponding to dust sublimation temperature Ts (equation A1).
The dust temperature declines with radial distance toward its surface value
Tout. The intensity at impact parameter b is obtained from integration along
the indicated path toward the observer.
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and as small as 3 at T� = 3000 K. The intensity at frequency ν and
impact parameter b (Fig. A1) is

Iν(b) = σν

∫
[(1 − �ν)Bν + �ν Jν] nd dz, (A2)

assuming isotropic scattering. Here nd is the dust density, z is dis-
tance along the path to the observer, �ν is the albedo at frequency ν

and Jν = ∫
Iν d�/4π. This expression neglects self-absorption

by the dust; the error in this approximation is of the order of
1 − exp(− ∫

σνnd dz).

A1 Scattering wavelengths

Because the dust temperature cannot exceed the sublimation tem-
perature Ts, there is no dust emission at λ � 4 µm × (1000 K)/Ts,
only scattering. Diffuse radiation and attenuation between the star
and the scattering point can be neglected because our discussion is
centred on optically thin dust. Then, the only source of scattering
is the stellar radiation with energy density Jν = Lν/4πr2, where
Lν is the stellar luminosity at frequency ν. From equation (A2), the
scattered brightness is

Iν(θ ) = Lν

4π
�νσν

∫
nd dz

r 2
, (A3)

where θ = b/D and D is the distance to the observer. Because
the frequency and geometry dependence separate out, all scattering
wavelengths share a common image. Only the brightness level varies
with ν, and because of the wavelength decline of �νσν the observed
size generally decreases with wavelength when traced to the same
brightness level. In any geometry the scattering image always traces
directly the variation of column density along the line of sight; the
dust temperature profile is irrelevant.

A2 Emission wavelengths

At wavelengths longer than ∼3 µm, �ν < 10−2 and scattering can
be neglected. The Planckian enters in equation (A2) as a function
of T at fixed ν, which can be well approximated by its Rayleigh–
Jeans limit at T � Tν = 0.56hν/k and a sharp cut-off at Tν . With
this approximation the integration is limited to locations along the
path where T � Tν ; regions with T < Tν are too cold to emit
appreciably at frequency ν. Excluding highly patchy geometries,
the highest temperature on the path occurs at r = b (i.e. z = 0), the
closest distance to the star, and only paths with T(b) > Tν contribute
to the brightness. As z increases in either direction, T decreases. The
integration is truncated either because the temperature becomes too
low, in which case the emission is temperature bounded, or because
the edge of the source is reached and the emission is matter bounded.
We denote the resulting integration limits Zi(i = 1, 2), then

Iν(θ ) = 2

c2
ν2σν

∫ Z2

Z1

kT nd dz. (A4)

In the matter bounded case Zi is the edge of the source, the integral
is independent of ν and the frequency dependence of the intensity
follows ν2σν . In the case of temperature bounded emission, the in-
tegration limits introduce additional ν dependences that modify this
behaviour. However, the integration can be extended to ∞ whenever
(1) Zi 
 b and (2) the product ndT of dust density and temperature
declines along the path faster than 1/z. Therefore, when these two
conditions are met, the frequency variation of optically thin emis-
sion is Iν ∝ ν2σν even when it is temperature bounded. Independent
of geometry, all frequencies that obey these conditions produce a

common image, similar to the scattering case; only the scale of
brightness varies with ν. This result makes it possible to determine
the wavelength dependence of the dust cross-section directly from
imaging observations.

Similar to the variation along the line of sight, when b increases
(moving away from the star) the emission again is truncated by
either the matter or temperature distribution. We denote by Tout the
temperature at the source outer edge. The corresponding emission
cut-off wavelength is

λout = 100 µm × 40 K

Tout
. (A5)

When λ > λout, the dust is sufficiently warm everywhere that the
emission is truncated only by the matter distribution. The observed
size is then �, the angular displacement of the source edge from
the star, the same for all wavelengths. However, when λ < λout

the brightness is truncated when T(b) � Tν before the edge of the
source is reached, resulting in a wavelength-dependent angular size
θλ < �. The observed size of optically thin emission increases
with wavelength so long as λ < λout, the opposite of the trend at
scattering wavelengths.

The frequency variation of the dust cross-section is well described
by σν ∝ νn with n = 1–2. Then, to a good degree of approximation,
the temperature variation of optically thin dust is T ∝ 1/rt, where
t = 2/(4 + n), producing the wavelength-dependent observed
angular size

θλ = � ×
{

(λ/λout)
1/t λ < λout

1 λ � λout

. (A6)

Because t < 1
2 , θλ increases faster than λ2, a fairly steep rise.

A3 Flux – the SED

The flux can be obtained from equation (A2) by integration over the
observed area. At emission wavelengths, the flux at distance D is

Fν = σν

D2

∫
Bν(T ) nd dV . (A7)

Because the temperature profile of optically thin dust depends only
on distance from the star, the dependence on the source geometry
enters only from nd.

As before, the integration is truncated by either the temperature
or the matter distribution. Whenever λ > λout at every point on the
surface, the emission is matter bounded everywhere and the inte-
gration encompasses the entire source. Under these circumstances
Fν ∝ ν2σν , a universal SED that depends only on the dust prop-
erties irrespective of geometry. In particular, the spectral variation
σν ∝ νn gives Fν ∝ ν2+n, therefore the signature of matter bounded
emission is this SED accompanied by wavelength-independent im-
ages; this is the expected behaviour in any geometry at sufficiently
long wavelengths. At λ < λout the integration volume is truncated
by the temperature, and because the emission volume decreases as
the frequency increases, the rise of Fν with ν becomes less steep
than in the matter dominated regime. Therefore, the SED changes
from Fν ∝ ν2+n at λ > λout to a flatter slope at λ < λout.

The break in the slope at λout can be used to determine the sur-
face temperature Tout. Flux spectral variation shallower than ν3 is
a clear indication of temperature-bounded emission and should be
accompanied by an image size that increases with wavelength.
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A4 Spherical geometry

Some explicit results are easily derived in the case of spherical sym-
metry. Thanks to the scaling properties of dust radiative transfer (IE),
only two properties are required to specify the geometry. The first
is the radial optical depth at one wavelength, say τV = σV

∫
nd dr

where σV is the cross-section at visual; at every other wavelength,
τν = qντV where qν = σν/σV. The second is the dimensionless,
normalized profile of the dust density distribution

η(y) = nd(y)∫ ∞
1
nd dy

(A8)

where y = r/Rs; note that
∫

η dy = 1. Explicit results follow
immediately for all power-law density profiles where

η = N
y p

N =
{

(p − 1)/(1 − Y 1−p) p �= 1

(ln Y )−1 p = 1
. (A9)

The shell extends to the outer radius YRs, subtending the angular
region θs � θ � �, where θs = Rs/D and � = Yθs. At scattering
wavelengths

Iν,sca(θ ) = N
2π

τV Lν�νqν

(
θs

θ

)p+1

×
∫ √

(�/θ )2−1

0

du

(1 + u2)(p+2)/2
. (A10)

Whenever θ � � the integration can be extended to ∞, yielding
I(θ ) ∝ 1/θp+1; the brightness decreases as a power law as long
as the observation direction is not too close to the halo edge. At
emission wavelengths, on the other hand,

Iν,em(θ ) = 4N
c2

kTsτVν2qν

(
θs

θ

)p+t−1

×
∫ √

(θλ/θ )2−1

0

du

(1 + u2)(p+t)/2 (A11)

where the observed size θλ is smaller than � when λ < λout (equa-
tion A6). As long as θ � θλ, the integration can be extended to
∞ and the brightness then decreases along any radial direction in
proportion to 1/θ p+t−1.

The flux integration in equation (A7) is similarly terminated at
the observed boundary θλ, producing

Fν = 8πN
c2

kTsθ
2
s τV

ν2qν

3 − (p + t)

[(
θλ

θs

)3−(p+t)

− 1

]
. (A12)

Because θλ > θs, there are two families of SED. In the case of steep
density distributions with p > 3− t, the first term inside the brackets
can be omitted because 3 − (p + t) < 0. Such distributions produce
Fν ∝ ν2σν irrespective of the actual value of p. Because typically
t ∼ 0.4, this behaviour applies to all cases of p � 2.6. On the other
hand, whenever p < 3 − t the omitted term dominates and the SED
is a broken power law. The power index switches from the universal
2 + n at λ � λout to the geometry-dependent value 3 + n − (3 − p)/t
(see also Harvey et al. 1991) at λ � λout.

These results show that the SED displays a dependence on the
density profile only when p � 2.6, and then only in the spectral
region λ � λout. All other regions of p and λ produce the universal
behaviour Fν ∝ ν2σν .
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