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ABSTRACT OF DISSERTATION

2D RADIATIVE TRANSFER IN ASTROPHYSICAL DUSTY ENVIRONMENTS

I have developed a new general-purpose deterministic 2D radiative transfer code for

astrophysical dusty environments named LELUYA (www.leluya.org). It can provide the

solution to an arbitrary axially symmetric multi-grain dust distribution around an arbi-

trary heating source. By employing a new numerical method, the implemented algorithm

automatically traces the dust density and optical depth gradients, creating the optimal

unstructured triangular grid. The radiative transfer equation includes dust scattering,

absorption and emission. Unique to LELUYA is also its ability to self-consistently re-

shape the sublimation/condensation dust cavity around the source to accommodate for

the anisotropic difiuse radiation.

LELUYA’s capabilities are demonstrated in the study of the asymptotic giant branch

(AGB) star IRC+10011. The stellar winds emanating from AGB stars are mostly spher-

ically symmetric, but they evolve into largely asymmetric planetary nebulae during later

evolutionary phases. The initiation of this symmetry breaking process is still unexplained.

IRC+10011 represents a rare example of a clearly visible asymmetry in high-resolution



near-infrared images of the circumstellar dusty AGB wind. LELUYA shows that this

asymmetry is produced by two bipolar cones with 1/r0:5 density proflle, imbedded in the

standard 1/r2 dusty wind proflle. The cones are still breaking though the 1/r2 wind, sug-

gesting they are driven by bipolar jets. They are about 200 years old, thus a very recent

episode in the flnal phase of AGB evolution before turning into a proto-planetary nebula,

where the jets flnally break out from the conflning spherical wind. IRC+10011 provides

the earliest example of this symmetry breaking thus far.
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Germany. Special thanks go to Gerd Weigelt, the director of the group, for his support

and hospitality during my multiple visits to the Institute.

If you °ip through the pages of this dissertation, you will often see the name Leluya.

This is not only the name of my computer code that this dissertation is based on, but also

the name of a pre-Christian Croatian goddess of lightning. It was Lidija Bajuk Pecoti¶c

who proposed this name and provided the beautiful mythical stories behind it. Marko

•Cavka provided a touch of his design talent by making a cool logo, web-pages for Leluya

(www.leluya.org), and a design for my conference posters. I thank them both because

without their help Leluya would not have the appeal it has.

What you can not see from my dissertation is that I have been involved in several other

iii



research projects. I would like to thank Anatloy Miroshnichenko for his longstanding

collaboration in the project about young stellar objects.

There is also research on meteors, which has a very special place in my heart. For that

I am grateful to the \Mongolia team": a group of my good, old friends who put together

an expedition to Mongolia in 1998 to study sounds from meteors. They accepted me as a

team member and we ended up in an adventure that has taken us a long way since those

freezing nights of mid November of 1998 in the Mongolian wilderness. I am extremely

grateful to the expedition team leader Slaven Garaj for his friendship and guidance of that

project. I also thank Pey-Lian Lim , who joined me on this project later on. Thanks to

Stipe Klarich, Pey-Lian and I had antennas to work with, and thanks to Teresa Moody,

we \explored" eastern Kentucky while testing our equipment. Also, thanks to Bruce

Gillespie we enjoyed the hospitality of the Apache Point Observatory while observing

meteors in November 2002. I am also thankful to Teresa for correcting my English in

many occasions.

Speaking of correcting my English, there is nobody who \sufiered" more than Helen

Klarich. Well, maybe Robert Bauman because of his very studious and time consuming

approach to this job. I thank them both. And I thank them for their friendship that

has made my life here in Lexington enjoyable, together with friends like Ninfa Floyd and

Jordi Moya-Larano , to name a few.

Of course, those who helped me the most with my life here in Lexington are Ivica Re•s

and Ivana Mihalek . Lets be honest: they adopted me while they lived here. What can I

say ... thanks guys!

I also thank my colleagues and friends in znanost.org, a non-proflt organization pro-

moting the public understanding of science. We know that we are going to change the

world ... yeah, right! It is worth trying, though, and it is their work and enthusiasm that

keeps that dream alive in me.

Last, but not least, I want to thank my family for their love and support: my dad

Ivan Vinkovi¶c, my brother Mladen Vinkovi¶c and his wife Dijana Matak Vinkovi¶c.

All in all, I can say that I have been blessed with having so many friends. They have

shaped my life and they continue to do so. People like Igor Ga•spari¶c with his sense of

iv



humor, and people like Korado Korlevi¶c with his view of life. Thank you all!

Moshe often likes to say that he has \aged." Thus, I would like to remind him of what

Homer Simpson has to say about old people: \...old people don’t need companionship.

They need to be isolated and studied so it can be determined what nutrients they have that

might be extracted for our personal use".

.... D’oh!!

v



Table of Contents

Acknowledgements iii

List of Tables viii

List of Figures ix

List of Files xii

1 Introduction 1
1.1 Stochastic vs deterministic . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Basics of dust extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory 11
2.1 Radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Flux and luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Dust temperature and local thermodynamic equilibrium . . . . . . . . . . . 14
2.4 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Optical depth scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Scaled thermodynamic equilibrium equation . . . . . . . . . . . . . . . . . 18
2.7 Global iteration loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 The integral form of radiative transfer . . . . . . . . . . . . . . . . . . . . 20
2.9 Stellar contribution to intensity . . . . . . . . . . . . . . . . . . . . . . . . 21
2.10 Scaled radiative transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.11 The source luminosity and angular size . . . . . . . . . . . . . . . . . . . . 24
2.12 Luminosity conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 Radiation pressure force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 Point source approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Numerical algorithms and software development 28
3.1 General introduction to discretization . . . . . . . . . . . . . . . . . . . . . 28
3.2 Basics of the LELUYA’s algorithms . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Spatial grid generation . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Angular grid generation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Parallelization efiorts . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Computational demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4 Bipolar out°ow on the Asymptotic Giant Branch|the case of IRC+10011 42
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Observational Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 2D Model of IRC+10011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Model calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 2D Temperature Proflle . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.3 Luminosity Conservation . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.4 Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Comparison with Observations . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Visibility Functions and Images . . . . . . . . . . . . . . . . . . . . 56

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Dust Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Circumstellar Mass and its Distribution . . . . . . . . . . . . . . . . 61
4.5.3 Jet Model for the Bipolar Structure . . . . . . . . . . . . . . . . . . 63
4.5.4 Asymmetry Evolution in AGB Stars . . . . . . . . . . . . . . . . . 64

4.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

References 67

Vita 72

vii



List of Tables

3.1 The LELUYA’s memory requirements for various correlation matrix sizes
Nv;max and the number of simultaneous wavelengths n‚ for M=40Mb. The
line shows the range of numbers where the HP Superdome at the UKY can
be used (it has 2Gb of memory per processor). . . . . . . . . . . . . . . . . 40

viii



List of Figures

1.1 Leluya - artwork by Lucia L. Klarich . . . . . . . . . . . . . . . . . . . . . 3
1.2 Iris Croatica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Deflnition of intensity - see equation 1.1 . . . . . . . . . . . . . . . . . . . 8

2.1 From a point ~‰, the source (gray ball) has the angular size of ›⁄ (~‰). Any

ray between the point ~‰ and the source surface is deflned by a unit vector ~‡. 21
2.2 Watching from ~‰ far away along a line of azimuth µ0, the source looks like

a point and the rays are almost parallel. The source surface angle between
the ray ‡̂ and the vector ~‰ is ° (see text). . . . . . . . . . . . . . . . . . . 22

2.3 Luminosity is calculated over a sphere of radius ‰ from the radial °uxes
~F‚(~‰). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Diagram of the LELUYA’s main iteration loop. . . . . . . . . . . . . . . . 32
3.2 A sequence of steps in the grid generation. A triangle is reflned until a

certain resolution criterium is reached. If there is a sharp transition from
one dust type (shaded area) to another, the grid will trace the edge. . . . . 33

3.3 Discretization of an optical depth integral (white line). Red triangles in-
dicate locations of grid points (corresponding to triangle vertices) used for
the integral interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Same as flgure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 An angular grid on a unit half-sphere. The area of these spherical triangles

is used as a weight factor for the integrals along the lines through the center
of triangles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 The performance of LELUYA for a small size model (a subiteration over
»1000 vertices in an iteration over »7000 in total). Calculations performed
on the HP Superdome at UKY with the version of LELUYA as of mid July,
2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Sketch of the 2D model for the circumstellar dusty shell around IRC+10011.
In a spherical wind with the standard 1=r2 density proflle are imbedded two
polar cones with half-opening angle µcone and a 1=r0:5 density proflle. The
system is viewed from angle i to the axis. . . . . . . . . . . . . . . . . . . 46

ix



4.2 The computational grid. Top panel: Large scale view. Bottom panel: A
zoom into the central region. Some radial dimensions of the dust-free cavity
are listed in terms of the dust condensation distance in the equatorial plane.
The stellar radius is ‰? = 0.153. Temperature is calculated at the grid points
marked as spheres (their sizes carry no particular meaning). . . . . . . . . 48

4.3 Angular variation of ¿V, the optical depth at visual wavelengths along radial
rays from the condensation boundary up to the indicated radius ‰. The input
parameters specify ¿V(µ = 0–) = ¿ a

V and ¿V(µ = 90–) = ¿ e
V at ‰ = ‰out. . . . 49

4.4 Temperature distribution around the condensation cavity. The contours
start at 850 K and decrease at 50 K intervals. The dust condensation
temperature is 900 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Radial temperature proflles. There are two distinct temperature regions,
separated by µcone = 15– (see flgure 4.4). The µ > 15– proflle is hardly
afiected by the presence of the cones. . . . . . . . . . . . . . . . . . . . . . 51

4.6 The luminosity calculated over spherical surfaces of radius ‰ (eq. 4.3),
demonstrating conservation within the prescribed error tolerance of 5%. . . 52

4.8 Radial dependence of the ratio between the tangential and radial components
of the radiation pressure force along an angle of 16– from the axis. The
drawing outlines the positive directions of the components. . . . . . . . . . 54

4.9 Radiation pressure force asymmetry around the condensation cavity. Colors
and contours show the value of the tangential to radial force ratio. The
island of asymmetry points toward the cone, as seen in flgure 4.8. . . . . . 54

4.10 The model SED is shown with the thick, smooth solid line. Data (see H01)
are indicated with various symbols and all other lines. The inset shows an
expanded view of the 10„m region. . . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Left: The model SED and its breakup to the stellar, dust scattering and
emission components, as indicated. Right: Wavelength variation of the
relative contribution of each component to total °ux. Note the fast change
from scattering to emission dominance around 2„m. This transition is
responsible for the observed wavelength variation of the image asymmetry
in the near-IR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.12 Visibility functions. Lines are model predictions, symbols are data points
from H01 (near-IR) and Lipman et al. 2000 (11 „m). . . . . . . . . . . . 57

4.13 Theoretical J-band (1.24„m), H-band (1.65„m), and K’-band (2.12„m) im-
ages of IRC+10011. Upper row: images for perfect resolution, without
PSF convolution. The dot at the center of each image is the star. The
nearby bright fan-shaped structure is scattered light escaping through the
cone. Lower row: Images convolved with the instrumental PSF of H01.
Contours are plotted from 1.5% to 29.5% of the peak brightness in steps of
1%. The transition from scattered light dominance in the J-band to thermal
dust emission in the K’-band creates a sudden disappearance of the image
asymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



4.14 J-band brightness proflles along the major and minor axes. Thick lines
show the model predictions with and without PSF convolution. The thin
lines show the proflles from the H01 data above the noise level (within 1.5%
of the peak brightness). The strong central peak in the theoretical proflle is
the star, while the secondary peak visible on the major axis is light scattered
from the polar cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.15 H-band brightness proflles, same as flgure 4.14. . . . . . . . . . . . . . . . . 60
4.16 K-band brightness proflles, same as flgure 4.14. . . . . . . . . . . . . . . . . 61

xi



List of Files

Vinkovic.pdf 1.7Mb

xii



Chapter 1

Introduction

In its most general description, radiative transfer deals with the transport of radiation

through a medium. Radiation can be absorbed, scattered, or emitted by the medium.

The same formalism used for describing this transport can be applied to the transport of

neutral particles, such as neutrons (e.g. Carlson 1963) in the core of a nuclear reactor or

photons scattered through the human head as in the optical tomography (e.g. Boas and

Gaudette 2001). Astrophysics is especially dependent on the understanding of radiative

transfer. Applications range from the theories of stellar interiors, stellar atmospheres,

planetary atmospheres, circumstellar and interstellar clouds, galaxies, all the way to the

cosmological models.

Although the radiative transfer equations look simple at the flrst sight, they represent

a numerically challenging and multidisciplinary problem. Subrahmanyan Chandrasekhar,

who made many breakthroughs in this fleld of work during the 1950’s, once said (Cropper

2001):

My research on radiative transfer gave me the most satisfaction. I worked

on it for flve years, and the subject, I felt, developed on its own initiative and

momentum. Problems arose one by one, each more complex and di–cult than

the previous one, and they were solved. The whole subject attained an elegance

and beauty which I do not flnd to the same degree in any of my other work.

The research described in this dissertation is focused on the spectral continuum of

a dust cloud around or nearby a heating source, such as a star or a galactic nucleus.
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This represents a basic astrophysical problem and its solution is highly needed by the

astronomical community. In order to explain a vast number of observed astronomical

phenomena, astronomers increasingly seek an accurate solution to the radiative transfer

and dust temperature distribution. Unfortunately, there is a lack of multidimensional

codes that can keep up with the increasing requirements for more detailed and precise

theoretical modeling. An additional problem is a lack of diversity of multidimensional

algorithms, considering that the Monte Carlo method is used in currently the best codes

and, thus, their precision can not be independently tested.

Encouraged by the success of the 1D code DUSTY developed by Ivezi¶c, Nenkova,

and Elitzur (1999), in 1998 our research group embarked on a development of a code

for an axially symmetric two dimensional dust distribution. The goal was to have a

code without any limits on its resolution and 2D geometry, though it became apparent

quite soon that this is an extremely di–cult task to achieve. One of the main reasons why

multidimensional codes are not so advanced compared to the 1D codes is the way that they

generate their computational grids. The realization that the algorithm for grid generation

represents the heart of the problem led me to several years of code development. The

outcomes are newly developed numerical algorithms and methods that go beyond the

Monte Carlo method and provide the \exact solution" to the radiative transfer within

this geometry. Nonetheless, these algorithms are not limited to the astrophysics of dust.

They represent a completely new approach to the radiative transfer numerics.

As a result of this research, I have developed the code named LELUYA (www.leluya.org)

where I implemented these new algorithms. LELUYA can automatically trace the dust

density and optical depth gradients, creating the optimal adaptive grid. The grid is highly

unstructured and triangular (i.e. grid cells are triangles without pre-deflned constrains on

their shape), a rarity among the radiative transfer codes. Difierent grids are created this

way for difierent wavelengths to accommodate the spectral variation of dust opacity. The

radiative transfer problem conflned to the grid, including dust absorption, emission and

scattering, is solved without approximations. The flrst preliminary results from LELUYA

were obtained in spring 2002. They have been reflned since then and evolved into the

flrst scientiflc product of LELUYA, described in this dissertation.
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Figure 1.1: Leluya - artwork by Lucia L. Klarich .

Design by Marko •Cavka

LELUYA/LELIJA/LELUJA
Goddess of lightning, weddings, and
motherhood

LJELJUJA, PERUNIKA, SABLJA,
SABLJARKA, STRIJELKA, IRIS

Author of the following ethnological description of the name LELUYA is Lidija Bajuk
Pecoti¶c:

Figure 1.2: Iris Croatica

Numerous and colorful (Iris is rainbow in Latin) meadow wild-
°ower with saber-like leaves. Some species are widespread
and very common, but some of them grow in very lim-
ited areas and have become endangered, e.g. Iris Croat-
ica (Hrvatska Perunika, see picture) which grows only
in the northern and northwestern Croatia. It grows
in swampy sunny forest clearings. There are also ex-
otic cultivated species that grow in parks and gar-
dens.

This plant perunika got its name after the goddess of the
sky Perunika (Perunka, Perunova, Perkunova, Perena, Gorka),
wife of the old Slavic god Gromovnik (God of Thunder) Pe-
run. This is also a name for a place hit by a Perun’s spark
(i.e. thunder, arrow, saber), or where a rainbow "touches" the
ground.
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A kajkavian (Croatian dialect) version of this name is Leluja (Ljeljuja), probably in°ected form
of Ljelja, which is another name of this goddess. It comes as no surprise, then, that people
believed that carrying a dry root of perunika plant, if dug out on the Easter night, could protect
from stings and strikes.

Perunika (later transformed into Veronika), i.e. Ognjena Marija (Fairy Mary), wears a rainbow
as her belt. She is a goddess of lightning, weddings, and motherhood. Later, under Christianity,
her importance was degraded and she was regarded as an evil goddess, described as an evil
and ugly woman named Irudika, who was in turn a daughter of Poganica (exiled by Perun).
Perunika punishes people with a heavy sledge. God of Thunder has thunder at his disposal
(symbols of his sexual male potency), she has lightning at her disposal. The lightning comes
in two so-called forms: elongated watery type and glassy type. The latter is ball lightning, a
rare meteorological phenomenon, embodied during old times as apple, rosette, or female genital
organ, in the mythical perception of the world. Thanks to Perunika’s lightning, people learned
about the flre and water in clouds.

For more information about the mythology of LELUYA follow the link:

http://www.leluya.org/mythology.html

Concurrently with the development of LELUYA, I have worked on modeling the

spectral energy distribution and theoretical imaging of massive pre-main-sequence stars

(known as Herbig Ae/Be stars). For that purpose I used a hybrid 1D/2D version of

DUSTY which implements an approximate model of a °at dense dusty disk imbedded in

a tenuous halo (Miroshnichenko, Ivezi¶c, Vinkovi¶c, Elitzur 1999). The model yields nu-

merous interesting theoretical insights into the evolution of the circumstellar environment

of these stars. That work is not described in this dissertation, but the research goal is to

eventually address those same problems with LELUYA.

1.1 Stochastic vs deterministic

Numerical radiative transfer methods are highly dependent on their fleld of application, as

this allows implementation of speciflc simpliflcations. The common numerical di–culty,

however, in all radiative transfer implementations is how to deal with the dimensional-

ity of the system under consideration. The one-dimensional methods have been under

development for almost a century. Very e–cient algorithms have been developed in the

last 40 years (Chandrasekhar 1960; for the latest review see Peraiah 2002). On the other

hand, the multidimensional methods are not so advanced. The two-dimensional radiative
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transfer methods have gained some improvements in the 1990’s, but they are still very

limited in their applicability and essentially based on the decades-old methods. In general,

multidimensional methods are mostly approximate in their radiative transfer physics or

apply only to highly simplifled geometrical structures (there is no general review of all the

methods currently used in the context relevant to our research, but for a better insight

follow the references within e.g. Steinacker et al. 2003, Wolf 2003, van Noort at al. 2002,

Balsara 2001, Dullemond and Turolla 2000, Chick et al. 1996).

One method that bridges over all dimensions is the Monte Carlo technique. It has

been quite a popular choice in all radiative transfer flelds of study and a frontrunner in

addressing more complex problems. Its popularity is largely driven by its simplicity and

straight-forward logic. In a nutshell, the method works by following the evolution of a

randomly emitted \particle" (that is, an \energy packet") until it exits the computational

domain or gets destroyed. During this travel it goes through random interactions with the

medium where it can lose some energy or change its direction of travel. After following

a large number of such particles, we can collect enough statistics of particle-medium

interactions to establish a balance between the locally absorbed and re-emitted energy in

all parts of the computational domain.

Monte Carlo, however, sufiers from a long list of problems that originate from the

stochastic nature of the method. Many of those problems have been successfully addressed

only recently (e.g. Wolf 2003, Bjorkman and Wood 2001, Gordon et al. 2001, Hogerheijde

and van der Tak 2000, Lucy 1999). Nonetheless, not all of those \solutions" have spread to

all Monte Carlo codes, probably because they make the whole approach and programming

far more tedious.

Moreover, a few serious problems still remain. One of them is the error control. The

only error associated with the quantities derived from Monte Carlo calculations (such as

the dust temperature or the light intensity) is the statistical error. This error can be

reduced only by use of an increased number of emitted particles. However, deterministic

methods, like LELUYA, solve the equations on an underlying computational mesh. The

mesh is a result of a discretisation procedure over the computational domain, which in-

troduces systematic errors into the calculation. This is a useful feature because it allows
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a quantiflcation of the computational error associated with a particular discretisation fea-

ture on the mesh. For example, we can quantify the in°uence of the local temperature or

interpolation errors on the overall emerging light intensity. More importantly, determinis-

tic methods allow us to detect and quantify a local deviation from the energy conservation

and appropriately reflne the associated computational grid.

This points out another serious problem of Monte Carlo: grid resolution. The statis-

tics of the particle-medium interactions are derived on volume cells comprising a mesh. A

problem arises when small spatial features need to be resolved. Since Monte Carlo meth-

ods trace the most likely events, the interaction probability is proportional to the cell’s

volume. Hence, it is di–cult to \pump" enough particles into a small cell, especially if it

is positioned far away from the central energy source. Introducing an artiflcial bias into

the randomness of particle trajectories, in order to focus them toward a small cell to boost

its statistics, is in collision with the basic principles of stochastic methods. Such a bias

would create uncontrollable and unpredictable numerical errors. Deterministic methods

do not have this problem because they solve the equations at the grid elements (ver-

tices or cells). Therefore, Monte Carlo codes implement relatively simple grids that bear

a tendency toward local uniformity, which imposes a priori limits on their application.

In contrast, deterministic codes can use highly unstructured and non-uniform grids, as

LELUYA does.

Unfortunately, there are drawbacks to the deterministic methods. They critically de-

pend on the quality of the grid discretisation scheme. A too coarse grid creates flctitious

energy sinks, while a too coarse angular grid mimics an energy source, both leading to

large computational errors. Developing grid generation algorithms that can cope with

these problems is a di–cult and time consuming task. Consequently, the evolution of

such algorithms has been slow. In the astrophysical context, LELUYA employs the most

complicated radiative transfer grid known so far among the codes that can simultane-

ously handle the dust absorption, emission and scattering. Another problem with the

deterministic methods is that they require considerable computational resources. This

presses for the utilization of multiprocessor machines and development of e–cient par-

allelization schemes. Hence, LELUYA employs a parallelization implementation with a
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newly developed scheme exploiting speciflcs of LELUYA’s radiative transfer method. For-

tunately, \supercomputers" are becoming an increasingly accessible commodity thanks to

the increasing performance-over-price of Linux clusters.(1)

Finally, what should we use for multidimensional radiative transfer problems: de-

terministic methods or Monte Carlo? The answer depends intimately on the problem

under considerations, including the quality of observational data. Before engaging into

the \murky business" of radiative transfer modeling, we need to ask ourselves how much

detail we want from the modeling. A large number of astrophysics problems can be ad-

dressed quite successfully by implementing various simpliflcations. Monte Carlo codes

are ideal for tasks like that. There are problems, however, where such approaches have

reached their theoretical limits. These are usually the most intriguing and still open prob-

lems in astrophysics.(2) They include, for example, the circumstellar dusty disk and halos

around young pre-main-sequence (PMS) stars, the non-spherical dusty envelopes around

AGB stars, and the clumpy dusty torus around the central source of the active galactic

nuclei. For them we plan to use LELUYA for further investigations, as demonstrated in

this dissertation on the problem of non-spherical circumstellar envelope of the AGB star

IRC+10011.

1.2 Basics of dust extinction

The physics underlying radiative transfer is the interaction between electromagnetic ra-

diation and a medium comprised of small particles, or \dust", as we call them. This dust

alters the properties of a beam travelling through the medium. The basic quantity that

describes the radiative transfer physics is the energy carried along by the beam. It is

called speciflc intensity or brightness I‚ (or I”) and it describes how much energy dE‚ is

passing through a unit area dA per unit time dt within a unit solid angle d› per unit

(1)As of August 2003, the performance record is $84 per 1GFLOPS, achieved by the KAOS group at
the University of Kentucky with their KASY0 Linux cluster (http://aggregate.org/KASY0).

(2)Monte Carlo approach still does not have an alterative when polarization maps are considered. It
is also the best choice for 3D geometries, since deterministic codes are very inaccurate and limited in
their application (e.g. the 3D code described in Steinacker et al. 2003 has serious problems with the
luminosity conservation in geometries with steep dust density gradients). In addition, Monte Carlo is
still the preferred option in cases where anisotropic dust scattering is needed.
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wavelength d‚ (or frequency d”):

dE‚ = I‚ dA dt d› d‚ (1.1)

Figure 1.3: Deflnition of intensity - see equation 1.1

There are two extinction

processes by which the dust

reduces the intensity of a

beam: absorption and scat-

tering. Absorption converts

absorbed photons into inter-

nal energy, which in turn in-

creases the dust temperature,

while scattering de°ects pho-

tons from the beam. An exten-

sive multidisciplinary science

is hidden behind those simple general deflnitions. The dust particles can be of vari-

ous, often exotic shapes, structures and chemical compositions, with a range of sizes

and electromagnetic properties. Similarly, the dust particles emit radiation by processes

inverse to absorption. Thus, studying spectral changes caused by dust extinction and

emission yields information about the observed astrophysical dusty environments. Due to

the widespread presence of dust in the Universe, this astrophysical discipline has advanced

in the last twenty years into one of the mainstream flelds of study.

Even though the purpose of developing radiative transfer tools is to eventually investi-

gate the dust properties around the Universe, this dissertation is focused on the study of

radiative transfer processes once the dust properties are provided. What LELUYA needs

is the dust optical properties in the form of absorption cross sections ¾abs
‚ and scattering

cross section ¾sca
‚ , which combined give the extinction cross section:

¾ext
‚ = ¾abs

‚ + ¾sca
‚ (1.2)

Cross sections represent the probability of interaction between an incident photon and

a dust grain. It is a complicated function of the grain properties, photon wavelength
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and polarization, and the angle of outgoing photon relative to the incoming one. It is

sometimes convenient to compare cross sections with geometric cross sections a2…, where

a is the dust grain’s radius:

Qext ;abs;sca
‚ =

¾ext ;abs;sca
‚

…a2
(1.3)

Q‚ is called the e–ciency factor.

In our investigations so far, we have used a simple model of spherical dust grains

that radiate and scatter isotropically. This is, of course, a highly idealized description of

real astrophysical dust particles, but reasonable enough as a starting point. Namely, real

dust grains retain random orientations, which manifests itself as an averaged grain species

similar to those of spheres. An additional convenience is that the absorption and scattering

properties of spherical grains can be relatively easily calculated with the Lorentz-Mie

theory. In Lorentz-Mie theory, the electromagnetic flelds inside and outside the particle

are derived from an inflnite series of independent solutions to the wave equations, smoothly

connected to each other by the boundary conditions on the particle surface. In this

simplifled picture, all we need from the solid state properties of the dust material is the

complex refractive index(3) m‚ = n‚ ¡ik‚ . A pure dielectric, for example, has k‚ = 0

and, therefore, no absorption. Astrophysical ices and silicates are examples of materials

close to this limit with k‚ < 0:1. On the other hand, metals are examples of strong

absorbers and their k‚ is of the same order as n‚ . An extensive review of the physics of

astrophysical dust can be found in the recent book by Krũgel (2003).

If we want to derive the total extinction produced by the dust then we need to know

the dust number density Nd. In reality, however, grains of various sizes and chemistry

are mixed together. Therefore, we specify a mixture of grain sizes where each grain type

i has the number density ni, such that Nd =
P

i ni, and the corresponding cross section

¾ext
‚;i . This flnally leads to the extinction coe–cient:

•ext
‚ =

X

i

ni¾
ext
‚;i =

X

i

•ext
‚;i (1.4)

(3)Quantities n‚ and k‚ are often called the optical constants, even though they are functions of wave-
length. They are related to the dielectric permeability " and the magnetic permeability „ through the
index m‚ =

p
"„. Laboratory measurements often provide n‚ and k‚ for various compounds supposedly

present in space.
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which is nothing else than the probability per unit length for a photon to interact with a

dust grain.

This means that the fraction of intensity lost due to extinction within a length interval

dl along the path of travel is:

dI‚ = ¡•ext
‚ I‚ dl (1.5)

If a source of brightness I0 exists behind the dust cloud then we can integrate equation

1.5 throughout the cloud and get the intensity I coming out of the cloud:

I = I0e¡¿‚ (1.6)

where ¿‚ is the optical depth of this cloud:

¿‚ =
Z

•ext
‚ dl (1.7)

Equations 1.6 and 1.7 represent the basics of the radiative transfer process. As we will

see in this dissertation, the picture gets complicated with the dust emission and scattering

behaving as energy sources for I, as well as with the dust properties being a function of

location in the cloud. Nonetheless, it always comes to some form of these equations, as

the main goal of any radiative transfer calculation is to calculate how much energy is

streaming into a point of space. If we were observers then this information tell us what

we measure with our instruments. If we were a dust particle then this energy keeps us

warm and regulates our temperature.

Copyright c° Dejan Vinkovi¶c 2003
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Chapter 2

Theory

Radiative transfer equations have been described in detail by many authors. New and

innovative ways of rewriting these equations can lead to a better insight and sometimes

to a new method of numerical solution. The major progress in radiative transfer solvers

has been achieved for the equations in one-dimensional geometries (for a recent review see

Peraiah (2002)). The equations in multidimensional geometries are still not fully explored

in regard to potential numerical treatments. Especially important is to decide which form

of equations to use in the numerical approach: difierential, integro-difierential, or integral

form. As we will argue in the next chapter, there are strong motivations for using the

integral form to explore new numerical methods.

This chapter(1) deals with the detailed description of the axially symmetric two-

dimensional equations used in LELUYA. The problems that LELUYA aims to solve can

be described with the radiative transfer equation:

dI‚

d¿‚

= S‚ ¡ I‚

which is a more general version of equation 1.5. The term S‚ represents an energy source

due to dust scattering and dust emission processes. S‚ is where numerical di–culties

are hidden and where details of a particular application enter. This equation will be

explored in more detail in the next section. Notice that LELUYA deals with a steady

state description of radiative transfer: time variation of the intensity does not enter the

equation. This assumes that the light travels across the computational domain in a time

(1)Marked by red color in this chapter are equations written in the form used in LELUYA.
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interval much shorter than the timescale of any intensity variation. In other words, time

variations in the energy source and/or in the dust density distribution are slow enough

that the whole dust cloud reaches a new equilibrium much faster than the timescale of

these variations.

One important aspect of our description is the scaling approach, originally described

by Ivezi¶c and Elitzur (1997). Thanks to scaling, all but one parameter can be described

with dimensionless quantities. Luminosities, units of densities, and linear dimensions are

irrelevant, while the only relevant property of the stellar radiation is its spectral shape.

By our choice, only the temperature of dust destruction/creation is specifled in real units

(kelvins). This approach implies general similarities between apparently difierent objects

and can signiflcantly reduce the free-parameter space during modeling. It also helps us

to write equations in such a way that during the phase of numerical solver development

we can approach them from various aspects without changing them.

2.1 Radiative transfer equation

In equation 1.5 we have already described how dust can reduce the intensity I‚ along

the path dl. Here we add two additional terms that increase the intensity. The flrst is

thermal radiation from the dust itself. Since emission is the inverse process to absorption,

the dust emission coe–cient •em
‚ is equal to the absorption coe–cient •abs

‚ . Thus, the

contribution to the intensity is •abs
‚ B‚ (T ), where B‚ is the Planck function and T is the

dust temperature. The second additional term is radiation coming from other directions,

but accidentally scattered into the direction of dl (described as the unit vector l̂). This

contribution is •sca
‚ J‚ , where J‚ is the mean intensity (or angular averaged intensity):

J‚ =
Z

›
I‚ (µ; ’)

d›

4…
(2.1)

for d› = sin µdµd’. In the case of anisotropic scattering we would introduce the angular

phase function gi(›; l̂) for scattering from direction › to l̂ of the dust type i, and the

mean intensity would be:

J‚;i =
Z

›
I‚ (µ; ’)gi(›; l̂)

d›

4…
(2.2)
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Taking into consideration that difierent dust types i can have difierent temperatures

Ti, we write the radiative transfer equation as:

dI‚

dl
= ¡

X

i

•ext
‚;i I‚ +

X

i

•abs
‚;i B‚ (Ti) +

X

i

•sca
‚;i J‚ (2.3)

The total extinction coe–cient in equation 1.4 helps us to rewrite the transfer equation

as:
dI‚

dl
= •ext

‚

ˆ

X

i

•abs
‚;i

•ext
‚

B‚ (Ti) +
X

i

•sca
‚;i

•ext
‚

J‚ ¡ I‚

!

(2.4)

The energy source terms are usually called the source function:

S‚ =
X

i

•abs
‚;i

•ext
‚

B‚ (Ti) +
X

i

•sca
‚;i

•ext
‚

J‚ (2.5)

and, together with the deflnition of optical depth d¿‚ = •ext
‚ dl, it gives the general form

of the radiative transfer equation:

dI‚

d¿‚

= S‚ ¡ I‚ (2.6)

The source function is what makes the radiative transfer so di–cult to solve. The

scattering part couples all dust particles to each other through photons bouncing from

one particle to another. The dust thermal radiation part is easier to handle if we know

the dust temperature. In that case we would need to raytrace the dust cloud just once.

Unfortunately, the dust temperature is regulated by the radiation fleld, thus we do not

know the temperature in advance.

2.2 Flux and luminosity

Two important quantities that we encounter in astrophysics are the °ux and luminosity.

The °ux in direction n̂ is the total energy streaming through a unit surface in a unit time

and wavelength:

~F ‚ (n̂) = n̂
Z

›
I‚ (µ; ’)n̂ ¢ d›̂ =

Z

›
I‚ (µ; ’) cos µ d› (2.7)

The same energy integrated over the whole energy spectrum is called the bolometric °ux:

~Fbol(n̂) = n̂
Z

‚

Z

›
I‚ (µ; ’) cos µ d› d‚ (2.8)
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If we want to see how much energy is coming out of an object, we need to enclose it by a

surface and integrate the bolometric °ux over this surface. This is called the luminosity:

L‚ =
Z

S

~Fbol ¢ dŜ (2.9)

The luminosity is a very important quantity for us because it can be used to check the

energy conservation. No matter what the shape of the closed integral surface is, the

luminosity stays constant as long as the same energy sources are within the surface.

A dusty medium enclosed within the surface cannot change this because the extinction

processes do not destroy or create energy - they only change its wavelength or direction

of travel. In LELUYA, the luminosity over spheres of various radii is calculated to check

its conservation. If the temperature iterations converge without achieving luminosity

conservation then the numerical grids are too coarse.

2.3 Dust temperature and local thermodynamic equi-

librium

In order to derive the dust temperature from the local radiation fleld, we impose the

condition of local thermodynamic equilibrium. It states that the dust temperature follows

directly form the energy balance between radiative heating and cooling:

heating = cooling

Z

•abs
‚;i J‚ d‚ =

Z

•abs
‚;i B‚ (Ti)d‚ (2.10)

If other forms of heating are also important then they should be included in this equation.

In the current version of LELUYA they are neglected, but in the future versions additional

heating mechanisms, like viscous heating in dense accretion disks, will be included.

In equation 2.10 we made an assumption that the dust temperature does not °uctuate

in time. This means that the time interval between the absorption of energetic photons

is larger than the cooling time. \Energetic" means an energy comparable to the heat

capacity of a dust grain. When such a photon is absorbed, the temperature jumps abruptly

by a K or more. Then it takes some time for the particle to cool down by emitting low-

energy photons. For large particles this does not represent a problem because of their large
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heat capacity. For nano-size particles, however, equation 2.10 might be too simplistic. The

actual size of these small grains depends on the radiation fleld. If we deal with a \hard"

fleld then even somewhat larger particles will be afiected. The fleld is \weak", when the

intervals between capturing photons become too long.

There is a way of treating this stochastic time evolution of dust temperature. The

plan is to incorporate it into future versions of LELUYA. So far, equation 2.10 works flne

for the currently considered applications. As we already mentioned, the dust temperature

Ti is not known in advance. Thus, we start with an initial guess for Ti, calculate J‚ and

then use equation 2.10 to update the temperature. This procedure is iterated until the

temperature converges toward one stable value.

2.4 Scaling

In their analysis of the radiative transfer equation 2.6, Ivezi¶c and Elitzur (1997) realized

that all but one parameter can be described with dimensionless quantities. This scaling

property removes the need for real units of luminosity, dust density, linear scales, stellar

radiation, and dust extinction coe–cients. The temperature of dust destruction/creation

is the only dimensional quantity that needs to be specifled. Density and distance scales

do not enter individually, only indirectly through the overall optical depth. The only

relevant property of the stellar radiation is its spectral shape, while the only relevant dust

properties are the spectral shapes of the absorption and scattering coe–cients. All these

aspects of scaling are described in this and forthcoming sections.

Notice that equation 2.10 does not depend on the absolute value of •abs
‚;i . We can,

therefore, introduce scaling of the absorption coe–cients by an arbitrary chosen value.

Since we work with a grain mixture, the scaling can be done by one of the components. Let

us use •abs
‚;0 , the absorption coe–cient of the flrst (counting from zero) dust component in

the mix at a given wavelength ‚0. In addition, since the extinction coe–cients are spatially

depended, •abs
‚;0 is not uniquely specifled until we do not specify its exact location.

Thus, before we proceed with our theoretical analysis, we should make one important

step of introducing a dimensionless spatial scale. Any vector in 3D space is scaled by
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some value r1 = j~r1j. Then we deal only with dimensionless position vectors ~‰ = ~r=r1.

This speciflc vector ~r1 becomes ~1 = ~r1=r1, and it is flxed in space. Later on we will see

how to choose and calculate this vector.

Unfortunately, considering the possible applications of numerical algorithms, in two

and three dimensions we cannot rescale the whole space after each temperature iteration

step. This comes from the fact that we do not know a priori the dust temperature at

~1. This is forcing us to anchor the numerical grid to the dust density distribution. That

allows us to create or destroy dust at ~1 according to the local dust temperature at that

point.

The dust density distribution ni(~‰) and the absorption cross section ¾a‚ ;i have to

be specifled beforehand for each dust component i, so that the dimensionless extinction

coe–cients can be derived:

qabs;sca;ext
‚;i =

ni(~‰)

n0 (~1)

¾abs;sca;ext
‚;i

¾abs
‚;0

(2.11)

We also need to scale the angle-averaged intensity J‚ (~‰). For this purpose, we in-

troduce the scaling bolometric °ux Fnorm. Later on we will decide how to deflne it so

that it will be the most convenient for us. The most natural choice would be to use the

source bolometric °ux Fnorm = L⁄=4…(r⁄)2, where r⁄ is the source radius. There is a

practical problem, however, when we work with a non-spherical source (e.g. a star or a

black hole with a hot accretion disk around it). This choice of Fnorm would require the

integral over the source surface, which can be very tricky to do numerically. Since we do

not want to introduce a large numerical error directly into the deflnition of equations that

we are solving, we will use a difierent, simplifled choice for Fnorm. On the other hand, we

will need this tricky integral for calculating the source intensity at grid vertices and for

luminosity conservation. As all these issues are relevant only for very anisotropic sources,

the current version of LELUYA works only with spherical sources where Fnorm = Fbol

anyway.

The scaled intensity becomes:

u‚ (~‰) =
4…‰2

Fnorm

J‚ (~‰) (2.12)
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where we use ‰ = j~‰j.
Scaling of the Planck function B‚ (Ti(~‰)) is straightforward:

b‚ (Ti(~‰)) =
…B‚ (Ti(~‰))

¾SBT 4
i (~‰)

(2.13)

where ¾SB is the Stefan-Boltzmann constant. u‚ and b‚ have the units of ‚¡1, but this

does not concern us because it cancels out in all equations where u‚ and b‚ appear.

2.5 Optical depth scale

The general deflnition of the optical depth along a path P , as already described in equation

1.7, is:

¿‚ (P ) =
Z

P
•ext

‚ (r1~‰) d(r1‰) = r1

X

i

Z

P
ni(~‰) ¾ext

‚;i d‰ (2.14)

From the computational point of view, the preferred choice is a path that gives the largest

optical depth through the dusty envelope. This is almost always a radial path and a user

will have to specify its azimuthal angle µ0.

The total optical depth ¿T
‚0

at the wavelength ‚0 has to be specifled, too. This optical

depth is a result of extinction between the closest distance to the source ‰sub (determined

by the temperature of dust destruction/creation) and the outer radius of the computa-

tional domain ‰out:

¿T
‚0

= r1

X

i

Z ‰out

‰sub

ni(‰; µ0)¾ext
‚0 ;id‰ (2.15)

If we take the ratio of the last two equations, the optical depth can be rewritten as:

¿‚ (P ) =
Z

P
·‚(~‰)d‰ (2.16)

where ·‚ is:

·‚ (~‰) =
¿T

‚0

P

i ni(~‰)¾ext
‚;i

P

j ¾ext
‚0 ;j

R ‰out

‰sub
nj (‰; µ0 )d‰

(2.17)

·‚ plays the central role in specifying the problem we are solving. It contains the density

and extinction spatial distributions, which is the signature of individual astrophysical

environments.

17



2.6 Scaled thermodynamic equilibrium equation

With the scaled values introduced, equation 2.10 becomes:

4¾SBT 4
i (~‰)

Fnorm‰2

Z

qabs
‚;i (~‰) b‚ (Ti (~‰)) d‚ =

Z

qabs
‚;i (~‰) u‚ (~‰) d‚ (2.18)

This equation only holds when we have the correct Ti(~‰) and Fnorm.

We continue with the scaling procedure by introducing:

“ =
4¾SBT 4

sub;0

Fnorm

(2.19)

where T 4
sub;0 is the sublimation temperature (at which the dust is destroyed or created)

of the 0th dust component. Instead of changing Fnorm during the iteration process, we

change the dimensionless quantity “.

Now we can flnally rewrite the equilibrium equation 2.18 in the form used in LELUYA:

T 4
i (~‰)

Z

qabs
‚;i (~‰) b‚ (Ti (~‰)) d‚ ¡ T 4

sub;0

‰2“

Z

qabs
‚;i (~‰) u‚ (~‰) d‚ = 0 (2.20)

2.7 Global iteration loop

Multidimensional radiative transfer brings one additional problem not encountered in

one-dimensional geometries. The sublimation cavity is a region of space around the

central energy source where the dust cannot exist because it gets too hot. The cavity

surface, often called the sublimation/condensation surface, is deflned by the dust subli-

mation/condensation temperature. In 1D geometries, we know its shape in advance (a

sphere for spherical geometry, or an inflnite °at plane for a slab). In multidimensional

geometries, however, we do not know it in advance. Instead, it has to be a part of the

flnal solution. If we describe this surface as Scavity;i for the ith dust component, and its

temperature as T (Scavity;i), then we have to solve the implicit equation:

T (Scavity;i) = Tsub;i = constant (2.21)
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This is a very serious problem because it says that we cannot even specify the problem we

are solving until we know Scavity;i. There is no radiative transfer code other than LELUYA

that can handle this problem. What other codes do is to flx the shape of the cavity and

abandoning the premise of having the sublimation/condensation temperature deflning its

shape. LELUYA, on the other hand, reshapes the surface after each update of the dust

temperature.

In order to do that, the scaling point ~1 has to be chosen wisely, since the density distri-

bution and the extinction coe–cients critically depend on its choice (equation 2.11). The

best way is to predict which dust species will be the closest to the source along one radial

line, mark this species as the 0th component, and then use its sublimation/condensation

point on that radial line as ~1. The default direction is the equatorial plane, but the user

can specify any other direction as well.(2) An additional consequence of this problem is

that the computational grid has to be recalculated after each temperature update. Since

the cavity’s surface can change during the dust temperature updates, the ·‚ denominator

also has to be updated as the surface changes.

The next thing is to flgure out how to update “. We need a point where we keep

the dust temperature constant by deflnition. Since our guess for the closest dust species

along the given radial direction might be incorrect, we have to keep open the possibility

that other dust species will be closer to the energy source. Thus, before updating “ we

have to flnd the closest point ~‰sub to the source along the given radial line. After that,

we use this point for updating “, which will ensure that this point stays exactly at the

sublimation/condensation temperature. The updated “ follows from equation 2.20 and

becomes:

“ =
T 4

sub;0

‰2
subT

4
sub;j

R

qabs
‚;j (~‰sub) u‚ (~‰sub) d‚

R

qabs
‚;j (~‰sub) b‚ (Tsub;j ) d‚

(2.22)

where j is the dust component which exists at ~‰sub.

At this stage we can see what the global iteration loop should look like. The only part

missing is how to calculate u‚ and this will be described in the upcoming sections.

a) flnd initial Ti(~‰), u‚(~‰), and “

(2)In a spherical geometry, for example, the direction does not matter because ~1 is on a sphere.
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b) flnd new u‚ (~‰)

c) update ·‚ denominator in equation 2.17

d) flnd new “ from equation 2.22

e) flnd new dust temperatures Ti(~‰) from equation 2.20

f) update the source size

g) make corrections of the sublimation surfaces

h) check convergence

i) go to b) if the convergence is not achieved

The step (f) is also described in the upcoming sections. The sublimation surface correc-

tion is a tricky problem by itself. Resolving it requires numerous \technical" procedures,

which go beyond the presentation of this dissertation.

2.8 The integral form of radiative transfer

The difierential form of the radiative transfer equation 2.6 can be rewritten into an integral

form, known as \the formal solution to the radiative transfer problem". The analytical

procedure of deriving the formal solution can be found in any advanced book on radiative

transfer. In general, the procedure consists of multiplying equation 2.6 by e¡¿ and inte-

grating by parts. If additionally integrated over d›, the integral form is expressed in terms

of the mean intensity J‚ instead of the ordinary I‚ . It is numerically convenient to dis-

tinguish between the intensity contribution J ⁄

‚ coming directly from the central source,

usually called the stellar radiation, and the difiuse contribution J difi
‚ coming from the

dust:

J‚ (~‰) = J ⁄

‚ (~‰) + J difi
‚ (~‰)

The formal solution, with the source function from equation 2.5 included, is then:

J‚ (~‰) = J ⁄

‚ (~‰) +
Z Z

X

i

"

•abs
‚;i (~‰0)

•ext
‚ (~‰0)

B‚ (Ti (~‰0)) +
•sca

‚;i (~‰0)

•ext
‚ (~‰0)

J‚ (~‰0)

#

e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
d›~‰

4…
(2.23)

The integral over optical depth is performed on a line deflned by the angular direction of

d›~‰. A point on that line is ~‰0 and the optical depth distance to ~‰ is ¿‚(~‰0 ; ~‰).
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The ratio of scattering and total extinction coe–cients is called the albedo. For the ith

dust component it is given by:

!‚;i(~‰) =
•sca

‚;i (~‰)

•ext
‚;i (~‰)

=
¾sca

‚;i

¾abs
‚;i + ¾sca

‚;i

(2.24)

and equation (2.23) can be rewritten as:

J‚ (~‰) = J ⁄

‚ (~‰)+
Z Z

X

i

¤‚;i(~‰0) [(1 ¡ !‚;i)B‚ (Ti (~‰0)) + !‚;iJ‚ (~‰0)] e¡¿‚ (~‰0 ;~‰)d¿‚ (~‰0 ; ~‰)
d›~‰

4…
(2.25)

where we introduced ¤‚;i:

¤‚;i(~‰) =
ni(~‰)(¾abs

‚;i + ¾sca
‚;i )£ (Tsub;i ¡ Ti(~‰))

P

j nj(~‰)(¾abs
‚;j + ¾sca

‚;j )£ (Tsub;j ¡ Tj(~‰))
(2.26)

£(x) is the step function (1 for x ‚ 0 and 0 for x < 0).

We recognize the source function as:

S‚ (~‰) =
X

i

¤‚;i(~‰)
•

(1 ¡ !‚;i)B‚ (Ti (~‰)) + !‚;iJ‚ (~‰)
‚

(2.27)

2.9 Stellar contribution to intensity

Figure 2.1: From a point ~‰, the source
(gray ball) has the angular size of ›⁄ (~‰).
Any ray between the point ~‰ and the source
surface is deflned by a unit vector ~‡.

The stellar part of the formal solution 2.25

at ~‰ is:

J ⁄

‚ (~‰) =
1

4…

Z

›⁄

~‰

I ⁄

‚(‡̂)e¡¿‚ (‡̂)d›⁄

~‰(‡̂) (2.28)

where ›⁄

~‰ is the solid angle of the source sur-

face visible from the point ~‰. The unit vec-

tor ‡̂ points to ~‰ from the stellar surface (see

flgure 2.1) and ¿‚(‡̂) is the optical depth be-

tween the surface and ~‰ along the line deflned by ‡̂. The inflnitesimal solid angle d› is

pointing along ¡‡̂ toward a point on the stellar surface of intensity I ⁄

‚(‡̂).

If a point ~‰1 is very far away from the source, the source will look like a point. The

corresponding \point source" °ux along the line of azimuth µ1 is:

F ⁄

‚1
(~‰1) =

Z

›⁄

~‰1

I ⁄

‚(‡̂1) cos µ0d›⁄

~‰1
(µ0; ’0) (2.29)
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where µ0 and ’0 are spherical angles around the point ~‰1, and cos µ1 = ẑ ¢~‰1. The source

radius ‰⁄ ¿ ‰1, thus:

µ0 … ‰⁄ sin °

‰1

(2.30)

where ° is the angle between ~‰1 and the vector toward the point ‡̂1(µ0; ’0) on the stellar

surface (see flgure 2.2). Then dµ0 = cos °d°‰⁄=‰1, cos µ0 … 1, sin µ0 … µ0, from which F ⁄

‚1

becomes:

F ⁄

‚1
(~‰1) …

ˆ

‰⁄

‰1

!2
Z 2…

0

Z 1

0
I ⁄

‚(‡̂1) cos ° d cos ° d’0 (2.31)

Figure 2.2: Watching from ~‰ far away
along a line of azimuth µ0, the source looks
like a point and the rays are almost paral-
lel. The source surface angle between the
ray ‡̂ and the vector ~‰ is ° (see text).

If the source intensity is uniform all over

the surface I ⁄

‚(‡̂1) = I⁄
‚ = const:, then

F ⁄

‚1
(~‰1) … …(‰⁄=‰1)2I⁄

‚ , as already de-

scribed in Ivezi¶c and Elitzur (1997). There-

fore, we introduce the equivalent point source

intensity:

I ⁄

‚1
(µ1) =

1

…

Z 2…

0

Z 1

0
I⁄

‚ (‡̂1) cos ° d cos ° d’0

(2.32)

so that F ⁄

‚1
(~‰1) … …(‰⁄=‰1)2I ⁄

‚1
(µ1).

Due to axial symmetry, the most natu-

ral choice for µ1 would be along the polar

axis ẑ. This is also advantageous for numeri-

cal integration because the integral 2.32 gets

simplifled:

I ⁄

‚1
= 2

Z 1

0
I⁄

‚ (µ; ẑ) cos µ d cos µ (2.33)

This \synthetic" intensity is used for scaling the \real" source intensity I ⁄

‚(‡̂) in equation

2.28:

i⁄

‚(‡̂) =
I ⁄

‚(‡̂)

I ⁄

‚1

(2.34)

and I ⁄

‚1
can be taken out from the integral in equation 2.28, together with the optical

depth ¿‚(~‰):

J ⁄

‚ (~‰) =
I ⁄

‚1

4…
e¡¿‚ (~‰)

Z

›⁄

~‰

i⁄

‚(‡̂)e¡(¿‚ (‡̂)¡¿‚ (~‰))d›⁄

~‰(‡̂) (2.35)
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Here we can see the purpose of this rewritten equation for J ⁄

‚ (~‰). The part of equa-

tion out of the integral does not depend explicitly on the source size, while the integral

represents a correction to this point source approximation. In other words, if we introduce

the mean equivalent point source intensity:

J ⁄

‚1
(~‰) =

1

4

ˆ

‰⁄

‰

!2

I ⁄

‚1
e¡¿‚ (~‰) (2.36)

then we can rewrite equation (2.35):

J ⁄

‚ (~‰) = J ⁄

‚1
(~‰) »⁄

‚(~‰; ‰⁄) (2.37)

where we use:

»⁄

‚(~‰; ‰⁄) =
1

…(‰⁄=‰)2

Z

›⁄

~‰

i⁄

‚(‡̂)e¡(¿‚ (‡̂)¡¿‚ (~‰))d›⁄

~‰(‡̂) (2.38)

(keep in mind that ›⁄

~‰ also depends on ‰⁄=‰). Notice that I ⁄

‚1
needs to be calculated

only once, before the iterations start, and it is used just to scale the other intensities.

What about non-spherical sources? The procedure is the same, except that we have to

be careful with the angular integration. In case of I ⁄

‚1
we consider only intensities I ⁄

‚(µ; ẑ)

which originate from the source surface. But in equation 2.38 the source intensity can

be also a difiuse radiation behind the sphere of radius ‰⁄ if the angular ray of integration

does not intersect the non-spherical source. Thus, in general, equation 2.38 is potentially

di–cult for numerical integration in cases of extremely complex energy sources.

2.10 Scaled radiative transfer

The scaled intensities in equation 2.12 and 2.13 can be used for deriving the scaled source

function s‚ (~‰) from equation 2.27:

s‚ (~‰) =
X

i

¤‚;i(~‰)

2

4(1 ¡ !‚;i)“‰2

ˆ

Ti(~‰)

Tsub;0

!4

b‚ (Ti (~‰)) + !‚;iu‚ (~‰)

3

5 (2.39)

The scaled radiative transfer solution is then:

u‚(~‰) =
4…‰2

Fnorm

J ⁄

‚1
(~‰) »⁄

‚(~‰; ‰⁄) +
Z Z

ˆ

‰

‰0

!2

s‚(~‰0) e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
d›~‰

4…
(2.40)

23



Remember that we still have not decided how to deflne Fnorm. The stellar part in the

equation above is:

4…‰2

Fnorm

J ⁄

‚1
(~‰) »⁄

‚(~‰; ‰⁄) = (‰⁄)2 …I ⁄

‚1

Fnorm

e¡¿‚ (~‰)»⁄

‚(~‰; ‰⁄) (2.41)

and it comes naturally to deflne Fnorm as:

Fnorm = …(‰⁄)2
Z

I⁄

‚ 1
d‚ (2.42)

Finally, we can write the flnal form of the formal solution from equation 2.40:

u‚(~‰) = f ⁄

‚1
e¡¿‚ (~‰)»⁄

‚(~‰; ‰⁄) +
Z Z

ˆ

‰

‰0

!2

s‚(~‰0)e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
d›~‰

4…
(2.43)

where f ⁄

‚1
= I ⁄

‚1
=

R

I ⁄

‚1
d‚ is the spectral shape of I ⁄

‚1
.

2.11 The source luminosity and angular size

In general, \source" is the smallest sphere that conflnes all central energy sources. The

source luminosity is:

L⁄ =
Z

dµ d’j~r⁄(µ; ’)j2 sin µ
Z

d‚
Z

d›~r⁄(‡̂)I⁄
‚ (~r⁄; ‡̂)r̂⁄ ¢ ‡̂ (2.44)

where ~r⁄(µ; ’) (unit vector r̂⁄) is a radial vector toward a point on the surface of spherical

coordinates (µ; ’).

This equation can be rewritten as:

L⁄ = 2

ˆ

r⁄

‰⁄

!2

Fnorm

Z

sin µdµ
Z

d‚f ⁄

‚1

Z

d› ~r⁄(‡̂)i⁄

‚(~r
⁄; ‡̂)r̂⁄ ¢ ‡̂ (2.45)

and by using equation 2.19 we can derive connection between the luminosity and the

angular source size:

(‰⁄)2 =
16…¾SB(r⁄)2T 4

sub;0

“L⁄
L (2.46)

where L has to be calculated only once, before we start with the radiative transfer itera-

tions:

L =
1

2…

Z 1

¡1
d cos µ

Z

d‚f ⁄

‚1

Z

d›~r⁄(‡̂)i⁄

‚(~r
⁄; ‡̂) r̂⁄ ¢ ‡̂ (2.47)

As we can see, the user will have to specify the source luminosity L⁄ and its size r⁄. When

the flnal solution is reached, the spatial dust density scale in real units can be obtained

from r1 = r⁄=‰⁄.
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2.12 Luminosity conservation

Figure 2.3: Luminosity is calculated over
a sphere of radius ‰ from the radial °uxes
~F‚(~‰).

Luminosity conservation is an important

component of radiative transfer. In addition

to the overall numerical precision, it gives us

information about local deviations from the

energy conservation. Such a deviation can be

a result of a coarse spatial grid, if the energy

is missing locally, or a coarse angular grid, if

the energy is increased. A simple way of iso-

lating portions of the computational domain

is by spheres of various radii centered at the

star (central energy source). The luminosity

from these spheres should stay equal to the

source luminosity 2.45.

Following deflnitions of °ux in 2.7 and lu-

minosity in 2.9, we derive the luminosity of a sphere of radius ‰:

L(‰) =
Z Z

~F ‚(~‰) ¢ d~S d‚ = 4…r2
1‰2

Z

‚

…=2
Z

0

F ‚ (~‰) sin µ dµ d‚ (2.48)

where d~S is an area element on the sphere. ~F ‚ (~‰) is the radial °ux on the sphere’s surface

in the radial direction ‰̂:

~F ‚ (~‰) = ‰̂
Z

I‚ (~‰; ›̂) ‰̂ ¢ d~› (2.49)

where the intensity I‚ (~‰; ›̂) is streaming into the point ~‰ from direction ›̂.

Notice that the mean intensity is based on the integral over d› while the value of °ux

is based on the integral over ‰̂ ¢d~›. Hence, in order to derive the scaled °ux F ‚ (~‰) we can

follow the same procedure as for the mean intensity, except for d› replaced with ‰̂ ¢ d~›.

The luminosity equation 2.48 is then transformed into:

L(‰)

4…r2
1Fnorm

= constant =

1
Z

0

d cos µ
Z

‚

d‚

"

f ⁄

‚1
e¡¿‚ (~‰)»⁄

F ;‚(~‰; ‰⁄; ‰̂) +
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+
Z Z

ˆ

‰

‰0

!2

s‚(~‰0)e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
‰̂ ¢ d~›~‰

4…

#

(2.50)

where »⁄

F ;‚ is (notice how it difiers from »⁄

‚ in equation 2.38):

»⁄

F ;‚(~‰; ‰⁄; ‰̂) =
1

…(‰⁄=‰)2

Z

›⁄

~‰

i⁄

‚(‡̂)e¡(¿‚ (‡̂)¡¿‚ (~‰))‰̂ ¢ d~›⁄

~‰(‡̂) (2.51)

When there is no dust, that is no difiuse radiation, the luminosity is equal to 4…r2
1Fnorm.

2.13 Radiation pressure force

In one-dimensional geometries, the radiation pressure force has only one pre-deflned direc-

tion. Multidimensional geometries make this direction unknown. The force in direction

n̂ is derived from the °ux ~F‚(~‰; n̂):

~F(~‰; n̂) =
1

c

Z

•ext
‚ (~‰) ~F‚(~‰; n̂) d‚ (2.52)

where c is the speed of light. We can combine the scaled °ux from equation 2.50 and

·‚ from equation 2.17 to obtain the scaled radiation pressure force:

cr1F(~‰; n̂)

Fnorm

=
Z

‚

·‚(~‰)

"

F‚(~‰; n̂)

Fnorm

#

d‚ =
Z

‚

d‚
·‚(~‰)

‰2

"

f ⁄

‚1
e¡¿‚ (~‰)»⁄

F ;‚(~‰; ‰⁄; n̂) +

+
Z Z

ˆ

‰

‰0

!2

s‚(~‰0)e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
n̂ ¢ d~›~‰

4…

#

(2.53)

For example, it is useful to calculate the radial and tangential component of the pressure

force to see how much is the dust pushed to move around the central source.

2.14 Point source approximation

We can safely approximate the central source with a point if the dust cavity surface is at

least a few source radii away from the central energy source and without density features

on the scale smaller than the source size. The equations are somewhat simplifled and take

the form presented in Ivezi¶c and Elitzur (1997). Some source-related quantities disappear

within this approximation: I ⁄

‚1
= I⁄

‚ , i⁄

‚(‡̂) = 1, which gives »⁄

‚ = 1, »⁄

F ;‚ = 1 and L = 1.
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The iteration step with calculation of the source size is not required any more. We

need only to calculate “. Fnorm becomes Fnorm = L⁄=4…r2
1. The formal solution of the

radiative transfer problem becomes:

u‚(~‰) = f ⁄

‚1
e¡¿‚ (~‰) +

Z Z

ˆ

‰

‰0

!2

s‚(~‰0)e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰)
d›~‰

4…
(2.54)

When the central source is a black body of temperature Teff , the source radius becomes:

(‰⁄)2 =
4

…

ˆ

Tsub;0

Teff

!4

(2.55)

Copyright c° Dejan Vinkovi¶c 2003
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Chapter 3

Numerical algorithms and software
development

3.1 General introduction to discretization

The flrst step in any numerical approach to the radiative transfer is discretization of

the equations to transform them from a continuum description into a discrete description,

replacing derivatives by difierences. If the discretization is performed poorly, the obtained

difierence equations will contain large intrinsical errors. No matter what we do with such

equations later on, the flnal outcome is unlikely to be correct. Hence, due to its complexity

and importance, the branch of numerical mathematics dealing with the discretization

problems has become a large \industry", meaning both a large fleld of study and an

important component of the modern industrial production line. In general, a discretization

covers the computational domain with discrete points that can be connected into a network

of discrete cells. The point discretization represents the equations at the points, while the

cell discretization is using cells for that.

When dealing with the points, the solution variables are interpolated from one point

to another by polynomials. This is known as the flnite difierence method. There are many

ways how to choose the polynomials and points. Since the source function (equation 2.5)

couples all points with each other (with dust scattering creating even bigger problems, as

described below), a widely popular approach is to couple only adjacent grid points. The

in°uence of points separated by large distances is incorporated through iterative propaga-

tion of the solution from one side of the computational domain to another and back, until
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the solution converges. This is the basic idea behind the short characteristic method. If

various problems with the convergence and errors are to be avoided, this method has to be

applied carefully, with special attention given to the boundary conditions, the difierence

equations, and the grid structure. All this implies limited capability of the algorithm,

with too simplistic computational grids for the applications of our interest. These grids

are structured, with pre-deflned shape of the cells. The preferred structures are logically

rectangular (e.g. Dullemond and Turolla 2000, van Noort, Hubeny and Lanz 2002), where

\logically" indicates that cylindrical or spherical or polar grids are not difierent from a

rectangular grid from the programming standpoint - only the discretization equations

are changed. When faced with steep gradients or strong anisotropies, these grids are an

a priori limit to the applicability of the method. In the best case, they are adaptive,

where the cell size varies locally, but adaptive grids produce large errors if not reflned

carefully, forcing the introduction of radiative transfer approximations (Bruls, Vollmõller

and Schũssler 1999). Recently, a more clever way of grid reflnement was proposed by

Steinacker et al. (2003), achieving fairly good results with this approach. Nonetheless, it

is still limited in its applicability as it creates an unreasonably large number of grid points

in complex geometries and works only for moderately anisotropic radiation flelds. Un-

der certain conditions, the method cannot conserve luminosity even though all variables

converge.

Among the cell discretization methods we have a choice between the flnite element

method, where the solution variables are represented by a set of trial functions over the

cell, and the flnite volume method, where the energy is exchanged through the cell sides

with the solution variables constant within the cell. The Monte Carlo methods are based

on the flnite volume method, while the flnite element methods are not so often used and

are not a good choice for highly anisotropic problems with very steep gradients (Richling

et al. 2001).(1)

The next a priori di–culty of radiative transfer is the question: what form of the

(1)There is one general numerical approach that has not been explored enough in radiative transfer
problems, even though it has a lot of potential: multi-grid methods. These methods use grids of various
coarseness to reduce the numerical error through interpolating the solution from one grid coarseness level
to another (Steiner 1991; Bendicho, Bueno and Auer 1997).
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equations should we use for the discretization? We have already mentioned in chapter 2

that we are going to use the integral form called the formal solution (equation 2.23), but a

valid question would be why not use the integro-difierential form in equation 2.6, or even

the °ux-version of this equation (see equation 2.7).(2) Indeed, these forms are the preferred

choice by other authors because there are many numerical methods already developed that

can be modifled for this purpose. A big drawback of any difierential equation, however,

is that a derivative of any smooth function oscillates much faster than the function itself.

The °ux is even worse because it also has a strong directional variation. These are not so

serious problems if we deal with slightly or even moderately anisotropic radiation flelds,

but the anisotropies can be huge for the set of problems that we are targeting.

Dust scattering is generally a numerical nuisance. It makes the radiative transfer

equations implicit, with the intensity appearing in the source function through the mean

intensity J‚ (equation 2.2). J‚ is complicated because it couples the solution at one

point in the computational domain with the solution at all other points within the whole

volume of the domain. The well known and extensively studied method of solving the

implicit radiative transfer equations is the lambda iteration scheme: J‚ = ⁄[S‚ ], where

⁄ operator (think of it as a big matrix) indicates whatever numerical procedure we use

in order to obtain J‚ from the source function S‚ .(3) As always with iteration schemes,

there is a concern of slow convergence. This led to the accelerated lambda iteration, an

approximation to the ⁄ operator which can be more easily inverted and provides faster

convergence.

We abandoned the concept of solving the scattering part of radiative transfer itera-

tively. This is possible if ⁄ is split into two parts called A and 1 ¢ B (1 is the unit matrix,

B is a vector). The former is a N £ N correlation matrix which couples N grid points

through dust scattering. The latter depends on the dust temperature and the central

(2)Radiative transfer equations involving derivatives of J‚ and F ‚ are called the 0th and 1st moment

equations. The 3rd moment involves the radiation (electromagnetic) pressure tensor. These equations can
be derived from equation 2.6 by integration over cosn µd cos µ, where n indicates the equation’s moment.
The problem, however, with these moment equations is that there is always one unknown variable more
than the number of available equations. This is a so-called closure problem and it comes down to not
knowing I‚ .

(3)In general, the lambda iteration is used with or without the scattering if we consider the implicit
J‚ through equation 2.10.
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energy source. Then we can move A[J‚ ] to the left-hand side of the radiative transfer

equation and end up with:

(1 ¡ A)[J‚ ] = B (3.1)

The matrix 1 ¡ A is calculated together with the vector B and then simply inverted to

directly obtain J‚ - no iterations needed. Several authors used this method for stellar

atmospheres (Gebbie 1967, Kurucz 1969, see also Peraiah 2002 p.82). Kurucz (1969) in

his abstract emphasizes: \This method leads to a rapid solution of the integral equation for

the source function and to an e–cient calculation of the mean intensity and °ux.", while

Peraiah (2002, p.83) says: \Unlike the iteration method, this gives a direct solution of the

integral equation and is therefore free of the di–culties faced in the iteration procedure."

This approach is also used in DUSTY by Ivezi¶c, Nenkova and Elitzur (1999) and it

works very e–ciently in 1D, with the additional advantage of better and simpler error con-

trol. The drawback, however, is that we are forced to use the long characteristics method

where a grid point is coupled with all other grid points - numerically very expensive task

to calculate. Of course, it is not really necessary to couple exactly each single grid point

to each other, but the computation is substantial even with a list of speed-up algorithms

which avoid many couplings. The main computational efiort is to calculate the matrix

elements of A and, therefore, smaller N is computationally preferable. A smaller number

of grid points is also advantageous from the computer memory point of view.

It has to be emphasized here that the flnal decision about what numerical approach

to use is always based on:

- the geometrical complexity of considered problem

- our choice of the required flnal numerical precision/resolution

- available computer power

- algorithm’s complexity from the programming standpoint

- available manpower to perform the programming and computations

- the total time available for such a project

Our initial motivation was to develop a general 2D code for radiative transfer without a

priori limits on its applicability, that would permit high numerical precision and spatial
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resolution. It was clear from the beginning that such a goal is unreachable if we put a

strong limit on the computer power. Hence, we abandoned the idea of using a single pro-

cessor machine and started exploring the parallelization methods to utilize multiprocessor

machines.

3.2 Basics of the LELUYA’s algorithms

We wish to study dust distributions for which the spatial scale and the optical depth

scale may change by many orders of magnitude within the computational domain. For

example, the typical optical depths in a circumstellar disk around a young PMS star span

over six orders at visual wavelengths, while the spatial resolution changes may be even

more than that between the outer and inner parts of the disk. Inability to solve the

radiative transfer equation for such dust density conflgurations forced astronomers to use

simplifled models, which can often lead to very misleading conclusions.

(1 ¡ A‚;ij) ¢ J‚;j = B‚;i

Radiative Transfer: flnd J‚;j

+
R

‚ •abs
‚ B‚ (T (~rj)) d‚ =

R

‚ •abs
‚ J‚;j(~rj)d‚

Local Thermodynamic Equilibrium: flnd T (~rj)

+
Luminosity conservation

+
Sublimation surface correction and

new grid generation

Figure 3.1: Diagram of the LELUYA’s main itera-
tion loop.

We decided to explore ways to

build an unstructured grid that

could map any kind of 2D dust

distribution up to a given resolu-

tion. This is a di–cult task be-

cause the grid has to map not only

dust density gradients, but also the

optical depth. Our goal of hav-

ing a robust algorithm that can

handle anything axially symmetric

of arbitrary large optical depth re-

quired a completely new approach

to the multidimensional radiative

transfer. The existing industry of grid generation methods is based on various types

of difierential equations where the grid has to map a given function (a scalar or vector).

In contrast, the optical depth is a 3D integral function unique to any point in space. The
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Figure 3.2: A sequence of steps in the grid generation. A triangle is reflned until a certain
resolution criterium is reached. If there is a sharp transition from one dust type (shaded
area) to another, the grid will trace the edge.

problem remains even if we write the radiative transfer equation in its difierential form

(moments of the intensity) because the optical depth still enters the equation.

Overall, we had to invent several new algorithms since nothing similar to our un-

structured grid has ever been tried before in the radiative transfer techniques. The new

algorithms include a spatial grid generator (which is the key element for the success

of our method), an angular grid generator, a radiative transfer method, a paral-

lelization technique, and even a way of calculating the flnal output results.

The overall problem to solve actually consist of four parts (flgure 3.1). The flrst step is

to calculate the correlation matrix A‚ and the thermal emission B‚ (which also includes

the attenuated stellar radiation) at each grid point j and wavelength ‚. This is the

radiative transfer part, where the goal is to flnd the mean intensity J‚;j. The next step is

to deduce the new dust temperatures T (~rj) based on J‚;j and the absorption coe–cient

•abs
‚;j . It is followed by a test of luminosity conservation throughout the computational

domain in order to check if the correct solution is reached within a predeflned numerical

precision. Finally, the fourth step is to check if the dust has to be created or destroyed in

or around the sublimation cavity in 2D space. Then a new grid is created and the whole

process is repeated until the temperature converges. The required numerical precision is

often achieved already after three iteration steps. To make sure that the optimal grid is

achieved, calculations with various grid coarseness should be performed and their results

compared.
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Figure 3.3: Discretization of an optical depth integral (white line). Red triangles indicate
locations of grid points (corresponding to triangle vertices) used for the integral interpo-
lation.

LELUYA expects the user to specify the central energy source, that is the shape of its

spectrum. It also needs the chemical and physical properties for each dust component, the

dust sublimation temperatures, the axially symmetric dust density distribution and the

total optical depth at one wavelength along one radial ray. The output result consists of

the spectral energy distribution for arbitrary inclination angles, together with 2D images

at arbitrary wavelengths, the dust temperature distribution and the bolometric °ux at

various radii and inclination angles (also used for calculating the luminosity).
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Figure 3.4: Same as flgure 3.3.

3.2.1 Spatial grid generation

The grid generator has to create an optimal number of points considering gradients of two

types of very difierent physical quantities: the dust density and the optical depth. It starts

with a regular hexagonal grid and reflnes it recursively until a certain resolution criterium

is reached. For example, the optical depth is calculated along the sides of triangles and

compared with the optical depth toward the edge of dust distribution. The triangle is

split into four smaller triangles if the optical depth along its sides is too big. After this

recursive process is flnished, sharp edges of the dust distribution are identifled. In the

end, all vertices are interconnected to form a triangular grid (Figure-3.2). One example of

a grid used in real life for modelling an AGB star you can see in the next chapter (Figure

4.2).

The relationship between the spatial and optical depth resolution is a complicated

nonlinear function of the spatial and optical depth distance toward the dust edge. This

function is crucial for achieving desired numerical precision with a relatively small number
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Figure 3.5: An angular grid on a unit half-sphere. The area of these spherical triangles is
used as a weight factor for the integrals along the lines through the center of triangles.

of points (several thousands).

Spatial grid enables discretisation of the optical depth integral in equation 2.43:

Z

ˆ

‰

‰0

!2

s‚(~‰0)e¡¿‚ (~‰0 ;~‰)d¿‚(~‰0 ; ~‰) !
X

j

ˆ

‰

‰j

!2

e¡¿‚ ( ~‰j ;~‰)¢¿‚(~‰j; ~‰) £ s‚(~‰j) (3.2)

along any line in 3D space starting from the grid point at ~‰ and ending at the edge of

computational domain.

Thanks to axial symmetry, the point ~‰j in 3D space can be described with just two

spatial coordinates. This point does not correspond to any grid point because it is highly

unlikely that an arbitrary line will go exactly through a grid point. Hence, its properties

are interpolated from the vertices of the grid triangle which contains ~‰j. Figure 3.3

and flgure 3.4 visualize this situation for one line. Optical depth steps ¢¿‚(~‰j; ~‰) are

determined from the size of the triangle which contains ~‰j.

3.2.2 Angular grid generation

In order to calculate how much energy is streaming from all directions into one dusty point

in space, we have to integrate throughout the whole computational domain volume. This

can be a cumbersome job if the number of rays is not optimized. The angular distribution

of these rays has to predict the directions where most of the energy is coming from and
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resolve these sources. A uniform distribution of rays is a bad choice because the angular

size of energy sources is usually very small and can not be resolved with a uniform grid

without having many thousands of unnecessary rays.

The search starts with an icosahedron and continues recursively dividing the spherical

triangles on a unit half-sphere (the full sphere is not needed because of the axial symme-

try). The area of these triangles is used as a weight factor ¢W in the sum that represents

the angular integral over 4… steradian:
Z

4…
f(›)d› !

X

i

f(›i)¢›i (3.3)

The integral rays are going through the center of the triangles. A clever method has to

be invented for deciding which spherical triangles to split to achieve the optimal angular

grid. The numerically most precise algorithm so far takes a 3D distribution of grid points

in space and counts how many of them are visible through a spherical triangle. The goal

is to have an approximately equal number of grid points visible through each spherical

triangle. This approach works because of the way the grid points are distributed in the

spatial grid. Their angular distribution around any point in space shows directions of

the density and optical depth gradients, which also indicates where to expect the light

intensity concentration. An example of an angular grid is shown on Figure-3.5.

Spatial discretization in equation 3.2 combined with angular discretization in equation

3.3 leads to the complete discretization of the optical depth integral (equation 2.43):
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‰ij
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e¡¿‚ ( ~‰ij ;~‰)¢¿‚( ~‰ij; ~‰)
¢›i

4…
£s‚( ~‰ij)

(3.4)

3.2.3 Parallelization efiorts

Parallelization in purely radiative transfer codes is not very common. The main reason

is a wide use of 1D codes that perform well on single processor machines, while the

multidimensional codes are still not so developed. Parallelization is usually performed on

the wavelength grid, since each of about 100 wavelengths requires the radiative transfer

treatment on its own. We tried that approach, but the processor loads were highly

unbalanced and created a lot of idle time.
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Figure 3.6: The performance of LELUYA for a small size model (a subiteration over
»1000 vertices in an iteration over »7000 in total). Calculations performed on the HP
Superdome at UKY with the version of LELUYA as of mid July, 2002.

Thus we use a new approach, where processors work on calculating difierent rows of

the correlation matrix. The scalability of this method is still under investigation, and in

flgure 3.6 you can see how it currently scales with the number of processors. In addition,

calculation of the luminosity conservation is parallelized separately. We also expect to

parallelize the parts of the code where the output images and spectrum are calculated.

3.3 Computational demands

The overall performance of LELUYA mainly depends on the total number of spatial grid

vertices. There is no a simple rule-of-thumb a priori estimate on this number for a given

dust geometry and desired numerical precision. A small size problem has about 2000

vertices at the wavelengths with the highest optical depths. A medium size problem

requires about 6000 such vertices, while a large (most di–cult) problem can go up to

10000.

LELUYA has been under development for the last flve years. Even though a large part

of the code is still missing, such as the graphic user interface, the priority was to make
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it operational as soon as possible. The flrst scientiflc results are described in the next

chapter. There are several additional challenging physical models scheduled for run. The

prospective results are of great interest for this fleld of study. We already have requests

for adding additional physics in LELUYA to attack even more challenging problems.

There has been a number of optimization efiorts done since LELUYA produced the

flrst useful scientiflc results. LELUYA’s algorithms are new, not fully explored so far, and

there is a space for improvements. The most of the improvements, however, depend on

the type of a problem that LELUYA is working on. Thus, the real life applications of the

code will also yield its best performance.

In a typical modelling of an astrophysical object, we have to run many models before

we are able to flt the data. The usual strategy with the 1D codes is to scan the parameter

space and often produce many thousands of models. With the multidimensional codes,

however, this is not possible because of the large computational demands. The approach

has to be difierent. Thus, it is advisable to study objects with enough data available

to a priori reduce the number of modeling free parameters to the minimum. A new

model is calculated only when a complete analysis of the previously calculated models is

completed. This helps us to anticipate certain results from the next model, hence avoiding

unnecessary computations. In the case of CIT3, for example, this approach resulted in

12 runs. The flnal runs are usually with increased resolution and precision because they

require more CPU time.

Another research approach is to study models that are interesting from the theoretical

point of view. Each single run of these models is a case study in itself. We plan to use

this approach on the °ared disk models. These models are usually with a high resolution

and medium size grids (around 6,000 vertices), thus computationally the most challenging

task for LELUYA so far.

Before engaging in a computational run, we have to be sure that the code will not

over°ow the available computer memory. The memory peak-requirement follows this

equation:

Memory[Bytes] = N2
v;max ¢ (n‚ + 2) ¢ 8 + M[Bytes] (3.5)
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approximate memory
requirement (Mb) for n‚=

Nv;max 11 9 7 5
2000 440 380 320 250
3000 930 800 660 520
4000 1630 1380 1140 890
5000 2520 2140 1760 1380
6000 3610 3060 2510 1960

Table 3.1: The LELUYA’s memory requirements for various correlation matrix sizes
Nv;max and the number of simultaneous wavelengths n‚ for M=40Mb. The line shows
the range of numbers where the HP Superdome at the UKY can be used (it has 2Gb of
memory per processor).

where Nv;max is the maximum number of grid vertices used in the correlation matrix

(N2
v;max is the size of this matrix) and n‚ is the maximum number of such matrices

calculated simultaneously. M is the rest of the memory requirement and it is about 70Mb

for medium size grids and about 20Mb for small ones. The actual memory consumption

varies during a single run, but this is the peak requirement that LELUYA needs. Since

Nv;max can be just a subset of the total grid, we can adjust Nv;max and n‚ to flt the

memory limitations of a particular machine. Table 3.1 shows an example of memory

requirements suited for the HP Superdome at the University of Kentucky. In addition to

this supercomputer, we also used a 65 Linux cluster KLAT2 at the Electrical Engineering

Department.

The pre- and post-processing work during modeling, however, requires a single pro-

cessor machine with access to visualization software. This includes the initial grid design

and the flnal calculation of the theoretical images and spectra. We used various UNIX

workstations at the Center for Computational Sciences, mostly a Pentium III (at 733MHz

under Linux), a Silicon Graphics Octane (dual-processor at 270MHz each), and a Pen-

tium 4 (at 2.4GHz under Linux). The majority of the code development has also been

performed on these workstations. The visualization has been usually performed on one

computer with a Pentium III (at 1.0GHz under MS Windows).

Visualization is an important component of our work, either as a code debugging tool
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or for data output. A part of the LELUYA’s output is in the form of the Virtual Reality

Modeling Language (VRML) scripts that can be visualized in 3D with freeware browsers

on various platforms. For this purpose, we used the SGI’s Cosmoplayer (for IRIX) and

Cortona by ParallelGraphics (for MS Windows). LELUYA can also provide the output

in form of PovRay scripts. PovRay is an open source software for photo-realistic image

rendering. In the future, our goal is to develop a special GUI for LELUYA which would

remove dependance on other visualization tools and scripts/languages.

Copyright c° Dejan Vinkovi¶c 2003
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Chapter 4

Bipolar out°ow on the Asymptotic
Giant Branch|the case of
IRC+10011

Abstract(1)

Near-IR imaging of the AGB star IRC+10011 reveal the presence of a bipolar structure

within the central » 0.100 of a spherical dusty wind. The density decreases as r¡1=2

within an opening angle of » 30– about the bipolar axis, while outside, the wind displays

the standard r¡2 density proflle. The image asymmetries originate from » 10¡4 Mfl of

swept-up wind material in an elongated cocoon. The cocoon conflnes bipolar jets that

drive its expansion. This expansion started » 200 years ago, while the total lifetime of

the circumstellar shell is » 4,000 years. Similar bipolar expansion, at various stages of

evolution, has been recently observed in a number of other AGB stars, culminating in

jet breakout from the conflning spherical wind. The bipolar out°ow is triggered at a late

stage in the evolution of AGB winds, and IRC+10011 provides its earliest example thus

far. These new developments enable us to identify the flrst instance of symmetry breaking

in the evolution from AGB to planetary nebula.

(1)The work described in this chapter was performed in collaboration with T. Blõcker, G. Weigelt, and
K.-H. Hofmann from Max-Planck-Institut fũr Radioastronomie, Bonn, Germany. I would like to thank
them for their hospitality during my multiple visits to the Institute, especially to Dr.Weigelt for his
support and help.
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4.1 Introduction

The transition from spherically symmetric Asymptotic Giant Branch (AGB) winds to

non-spherical Planetary Nebulae (PNe) represents one of the most intriguing problems

of stellar astrophysics. While most PNe show distinct deviations from spherical symme-

try, their progenitors, the AGB stars, are conspicuous for the sphericity of their winds

(see, e.g., review by Balick & Frank 2002). There have been suggestions, though, that

deviations from sphericity may exist in some AGB winds, and perhaps could be even

prevalent (Plez & Lambert 1994, Kahane at al. 1997). Thanks to progress in high res-

olution imaging, evidence of asymmetry has become more conclusive for several objects

in recent years (V Hya: Plez & Lambert 1994, Sahai et al. 2003; X Her: Kahane & Jura

1996; IRC+10216: Skinner et al. 1998, Osterbart et al. 2000, Weigelt et al. 2002; RV Boo:

Bergman et al. 2000, Biller et al. 2003; CIT6: Schmidt et al. 2002).

The star IRC+10011 (= IRAS 01037+1219, also known as CIT3 and WXPsc), an

oxygen-rich long-period variable with a mean infrared variability period of 660 days (Le

Bertre 1993), is one of the most extreme infrared AGB objects. This source served as

the prototype for the flrst detailed models of AGB winds by Goldreich & Scoville (1976)

and of the OH maser emission from OH/IR stars by Elitzur, Goldreich, & Scoville (1976).

The optically thick dusty shell surrounding the star was formed by a large mass loss

rate of »10¡5 Mflyr¡1. The shell expansion velocity of » 20 km s¡1 has been measured

in OH maser and CO lines. Various methods and measurements suggest a distance to

IRC+10011 in the range of 500 to 800 pc

For an archetype of spherically symmetric AGB winds, the recent discovery by Hof-

mann et al. (2001; H01 hereafter) of distinct asymmetries in the IRC+10011 envelope came

as a surprise. They obtained the flrst near infrared bispectrum speckle-interferometry ob-

servations of IRC+10011 in the J-, H- and K’-band with respective resolutions of 48 mas,

56 mas and 73 mas. While the H- and K’-band images appear almost spherically sym-

metric, the J-band shows a clear asymmetry. Two structures can be identifled: a compact

elliptical core and a fainter fan-like structure. Hofmann et al. also performed extensive

one-dimensional radiative transfer modelling to explain the overall spectral energy dis-
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tribution (SED) and angle-averaged visibility curves. Their model required a dust shell

with optical depth ¿(0:55„m) = 30 around a 2250 K star, with a dust condensation tem-

perature of 900 K. This one-dimensional model successfully captured the essence of the

circumstellar dusty environment of IRC+10011 but could not address the observed image

asymmetry and its variation with wavelength. In addition, the model had di–culty ex-

plaining the far-IR °ux, requiring an unusual transition from a 1=r2 density proflle to the

°atter 1=r1:5 for r larger than 20.5 dust condensation radii. Finally, the model produced

scattered near-IR °ux in excess of observations.

We report here the results of 2D radiative transfer modelling of IRC+10011 that suc-

cessfully explain the observed asymmetries. After analyzing in x4.2 general observational

implications we describe in x4.3 our model for a bipolar out°ow in IRC+10011. In x4.4

we present detailed comparison of the model results with the data and resolution of the

problems encountered by the 1D modelling. The discussion in x4.5 advances arguments

for the role of bipolar jets in shaping the circumstellar envelope of IRC+10011 and other

AGB stars. We conclude with a summary in x4.6.

4.2 Observational Implications

The near-IR images, especially the J-band, place strong constraints on the dust density

distribution in the inner regions. Emission at the shortest wavelengths comes from the

hottest dust regions. For condensation temperature » 1,000 K the peak emission is at »
4„m, declining rapidly toward shorter wavelengths. At 1.24 „m, the J-band is dominated

by dust scattering. It is easy to show that scattering by a 1=rp dust density distribution

produces a 1=rp+1 brightness proflle. The J-band image from H01 is elongated and axially

symmetric. Along the axis, the brightness declines from its central peak as 1=r3 in one

direction, corresponding to the 1=r2 density proflle typical of stellar winds. But in the

other direction the brightness falls ofi only as 1=r1:5, corresponding to the °at, unusual

1=r0:5 density proflle.

The large scale structure is not as well constrained by imaging. However, all observa-

tions are consistent with the following simple picture: An optically thick spherical wind
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has the standard 1=r2 density proflle. Since the buildup of optical depth is concentrated

in the innermost regions for this density law, the near-IR imaging penetrates close to the

dust condensation region. The wind contains an imbedded bipolar structure of limited

radial extent and density proflle 1=r0:5. The system is observed at an inclination from

the axis so that the wind obscures the receding part of the bipolar structure, creating

the observed asymmetry of the scattering image, which traces directly the density dis-

tribution. The inclination angle must be »< 45– since a larger value starts to expose the

receding part. But the inclination cannot be too small because the approaching part

would get in front of the wind hot dust, leading to a strong 10 „m absorption feature,

contrary to observations. Because of its shallow density proflle, the column density of

the bipolar structure increases as r1=2 away from the condensation cavity, and the size

of J-band image corresponds to the distance where the scattering optical depth reaches

unity. Regions further out do not show up because of self-absorption. Dust emission is

afiected also by the temperature distribution, and the central heating by the star tends

to produce spherical isotherms. Images taken at longer wavelengths, such as the K-band,

can thus appear more symmetric.

Some qualitative estimates of the gas density follow immediately. The wind optical

depth at the J-band must be »> 1. This optical depth is accumulated close to the dust

condensation radius, roughly 3£1014 cm for a distance of 650 pc. Assuming a standard

dust-to-gas ratio of 1:100, the gas density at the condensation radius is »> 3£107 cm¡3.

For the bipolar structure, the J-band optical depth is » 1 across the size of the observed

image, which is » 2£1015 cm. This leads to a density estimate of » 7£106 cm¡3 at the

condensation radius within the bipolar structure. These rough estimates are within a

factor 10 of the results of the detailed modelling described below.

The density at the base of the out°ow is about an order of magnitude lower in the

bipolar structure than in the wind region. An out°ow can bore its way through another

denser one only if its velocity is higher so that it plows its way thanks to its ram pressure.

The propagation of such high-velocity bipolar out°ows has been studied extensively in

many contexts, beginning with jets in extragalactic radio sources (Scheuer 1974). The

jet terminates in a shock, resulting in an expanding, elongated cocoon similar to the
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observed bipolar structure. With a 1=r1=2 density law, most of the bipolar structure mass

is concentrated at its outer edge with the largest r, consistent with the structure of the

expanding cocoon.

4.3 2D Model of IRC+10011

Figure 4.1: Sketch of the 2D model for the circumstellar
dusty shell around IRC+10011. In a spherical wind with
the standard 1=r2 density proflle are imbedded two polar
cones with half-opening angle µcone and a 1=r0:5 density
proflle. The system is viewed from angle i to the axis.

For our working model we

adopt for the bipolar struc-

ture the geometry shown in

flgure 4.1, which requires the

minimum number of free pa-

rameters. Each polar cone is

described by its half-opening

angle µcone and radial extent

Rcone. Apart from disconti-

nuities across the cone bound-

aries, the density depends only

on r. It varies as 1=r1=2 inside

the cones and 1=r2 outside, out

to some flnal radius Rout. To

complete the description of the

geometry we need to specify its

inner boundary, and it is important to note that this cannot be done a priori. Dust exists

only where its temperature is below the condensation temperature Tc. Following H01 we

select Tc = 900 K. The dust inner boundary, corresponding to the radial distance of dust

condensation, Rc, is determined from

T (Rc(µ)) = Tc (4.1)

The equilibrium dust temperature, T , is set by balancing its emission with the radiative

heating. But the latter includes also the difiuse radiation, which is not known beforehand

when the dust is optically thick; it can only be determined from the overall solution.
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Furthermore, because the spherical symmetry is broken by the cones, the shape of the

dust condensation surface can be expected to deviate from spherical and is not known a-

priori. Therefore equation 4.1 completes the description of the geometry with an implicit

deflnition of the inner boundary Rc(µ).

The radiative transfer problem for radiatively heated dust possesses general scaling

properties (Ivezic & Elitzur 1997). As a result, Tc is the only dimensional quantity

that need be specifled. All other properties can be expressed in dimensionless terms.

Luminosity is irrelevant, the only relevant property of the stellar radiation is its spectral

shape, which we take as black-body at T? = 2,250 K. For individual dust grains, the only

relevant properties are the spectral shapes of the absorption and scattering coe–cients.

For these we adopt spectral proflles corresponding to the silicate grains of Ossenkopf,

Henning & Mathis (1992) with the standard size distribution described by Mathis, Rumpl

& Nordsieck (1977; MRN). These properties are the same everywhere.

Density and distance scales do not enter individually, only indirectly through overall

optical depth. With two independent density regions, the problem deflnition requires two

independent optical depths. For this purpose we choose ¿ a
V and ¿ e

V, the overall optical

depths at visual wavelengths along the axis and the equator, respectively. Spatial di-

mensions can be scaled with an arbitrary pre-deflned distance, which we choose as the

dust condensation radius in the equatorial plane, Rc(90–). The radial distance r is thus

replaced by ‰ = r=Rc(90–) so that, e.g., ‰out = Rout=Rc(90–). Equation 4.1 becomes

an equation for the scaled boundary of the condensation cavity. The relation between

angular displacement from the star # and the distance ‰ is

# =
#?

2‰?

‰ (4.2)

where #? is the stellar angular size and ‰? = R?=Rc(90–) is the scaled stellar radius.

Physical dimensions can be set if one specifles a stellar luminosity L?, which determines

the condensation radius Rc(90–).

To summarize, in all of our model calculations the following quantities were held flxed:

grain properties, Tc = 900 K and T? = 2,250 K. In addition, we kept the outer boundary

flxed at ‰out = 1000. We varied ¿ a
V, ¿ e

V, µcone and ‰cone. Once a model is computed,
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comparison with observations introduces one more free parameter, the viewing angle i.

4.3.1 Model calculations

Figure 4.2: The computational grid. Top panel:
Large scale view. Bottom panel: A zoom into the
central region. Some radial dimensions of the dust-
free cavity are listed in terms of the dust conden-
sation distance in the equatorial plane. The stellar
radius is ‰? = 0.153. Temperature is calculated at
the grid points marked as spheres (their sizes carry
no particular meaning).

We developed a new 2D radia-

tive transfer code, LELUYA, that

can handle arbitrary axially sym-

metric dust conflgurations with-

out approximations. The dust

scattering, absorption and thermal

emission are solved exactly thanks

to newly developed parallel algo-

rithms, which will be described in

a separate publication. The cen-

tral source of radiation has a flnite

size instead of the often used point

source approximation. In addition

to the coupled equations of radia-

tive transfer and temperature equi-

librium, LELUYA solves equation

4.1 to determine the shape of the

dust-free cavity around the central

heating source. Another unique

feature is a highly unstructured tri-

angular self-adaptive grid that al-

lows LELUYA to resolve simulta-

neously many orders of magnitude

in both spatial and optical depth

space. All grid points are coupled

with each other through a correla-

tion matrix based on the dust scat-
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Figure 4.3: Angular variation of ¿V, the optical depth at visual wavelengths along radial
rays from the condensation boundary up to the indicated radius ‰. The input parameters
specify ¿V(µ = 0–) = ¿ a

V and ¿V(µ = 90–) = ¿ e
V at ‰ = ‰out.

tering. A simple matrix inversion gives the solution of radiative transfer for a given dust

temperature distribution without any iterations. The temperature is then updated and

the procedure repeated. Luminosity conservation within 5% is achieved in only three

steps.

Figure 4.2 shows LELUYA’s computational grid for the best flt model with ¿ e
V = 40, ¿ a

V

= 20, ‰cone = 700, and µcone = 15–. The upper panel shows a large scale view, the lower

panel shows a zoom-in toward the central region. Three grids of difierent resolutions

were created for three sets of wavelengths, based on the optical depth variation. The

flrst grid has 2982 points and starts with ¿ e = 120 at 0.2„m, the shortest wavelength

considered; this is the grid shown in the flgure. The second grid has 2836 points and

starts at wavelengths with ¿ e = 1:2. The third has 2177 grid points for wavelengths with

¿ e • 0:1. Angular integration around a grid point is performed over a highly non-uniform

self-adaptive angular grid (with about 550 rays on average).
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Figure 4.4: Temperature distribution around the condensation cavity. The contours start
at 850 K and decrease at 50 K intervals. The dust condensation temperature is 900 K.

The grid traces the dust density and optical depth variations. The condensation sur-

face determined by LELUYA completes the de¯nition of the geometry, and its irregular

shape causes a variation of the optical depth along radial directions, shown in ¯gure 4.3.

The shape of the condensation cavity re°ects the energy density of the local radiation

¯eld. Since the di®use radiation in the cones is weaker than in the equatorial region,

the dust there must get closer to the star to get heated to the same temperature. The

condensation distance is reduced up to 13% on the axis in comparison to the equator.

The stellar radius is½? = 0:153, that is, the condensation surface is» 6 stellar radii away

from the stellar surface.
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