

Fluid simulation with SIMPLE method

using graphic processors

Ivan Dević
Supervisor: dr. sc. Dejan Vinković

Split, March 2014
Master Thesis in Physics

Department of Physics
Faculty of Natural Sciences and Mathematics

University of Split

Abstract

In this thesis we explore how application of graphics processors can accelerate

calculations in fluid dynamics. We derive semi-implicit pressure linked equations (SIMPLE)

and present SIMPLE method (algorithm) which is used with a great success in calculation of

steady flows. Motivation for using graphics processors (GPUs) comes from their ability to

significantly shorten execution time of fluid flow calculations. Our implementation of the

SIMPLE algorithm on GPUs proved to be faster than CPU code by a factor larger then ten.

We test our GPU code in two common problems in fluid dynamics: driven lid cavity and

backwards facing step. Implementation of external forces on the fluid will also be

implemented via plasma actuators, which have been explored as a tool for reducing

turbulences and noise made by interaction between airplane wing and fluid. Our numerical

results show that plasma actuators pull the fluid streams closer to the surface of the

backwards facing step, as the size of the fluid vortex is reduced.

Contents
1. INTRODUCTION ... 1

2. DERIVATION OF EQUATIONS IN SIMPLE METHOD ... 2

2.2 The momentum equation ... 3

2.3 Incompressible Navier-Stokes equation .. 6

2.4 Staggered grid ... 8

2.5 Pressure correction method ... 9

3. GRAPHICS PROCESSOR UNIT AND CUDA .. 14

3.1 Introduction .. 14

3.2 CUDA ... 15

3.3 Memory model and memory types .. 17

3.4 Execution configuration ... 19

4. SIMPLE ALGORITHM ... 21

4.1 Summary of equations ... 21

4.2 Data transfer between global and shared memory on GPU 24

4.3 Visualization ... 25

4.4 Fluid mechanics problems ... 26

5. RESULTS .. 30

5.1 Driven-lid cavity ... 30

5.2 Backwards facing step ... 35

6. DISCUSSION AND CONCLUSION .. 42

APPENDIX A – Code .. 44

REFERENCES .. 56

List of figures and diagrams

Figure 2.1 Sketch of surface force applied to finite control volume 3

Figure 2.2 Checker board distribution which would be achievable with non-staggered

grid .. 8

Figure 2.3 Staggered grid used in SIMPLE method .. 9

Figure 3.1 Transistor distribution in CPU and GPU .. 14

Figure 3.2 Visualization of grid hierarchy in kernel ... 16

Figure 3.3 Memory model of GPU .. 19

Figure 4.1 Block identification system in two-dimensional grid 24

Figure 4.2 Example of necessary memory transfer from global memory to shared

memory in SIMPLE algorithm ... 25

Figure 4.3 Sketch of backwards facing step, where full lines represent solid boundary

and dotted line represents open boundary (no reflection of fluid on this boundary) .. 28

Figure 5.1 Solution of total velocity magnitudes in Driven-lid cavity 30

Figure 5.2 Solution of x-component velocitiy magnitudes in Driven-lid cavity 31

Figure 5.3 Solution of y-component velocitiy magnitudes in Driven-lid cavity 31

Figure 5.4 Visualization via streamline plot technique for Driven-lid cavity 32

Figure 5.5 Solution of total velocity magnitudes in backwards facing step 35

Figure 5.6 Solution of x-component velocity magnitudes in backwards facing step . 35

Figure 5.7 Solution of y-component velocity magnitudes in backwards facing step . 36

Figure 5.8 Visualization via streamline plot technique for backwards facing step 36

Figure 5.9 Solution of total velocity magnitudes in backwards facing step with plasma

actuator (A=1000) ... 37

Figure 5.10 Solution of x-component velocity magnitudes in backwards facing step

with plasma actuator (A=1000) ... 37

Figure 5.11 Solution of y-component velocity magnitudes in backwards facing step

with plasma actuator (A=1000) ... 38

Figure 5.12 Visualization via streamline plot technique for backwards facing step with

plasma actuator (A=1000) ... 38

Figure 5.13 Solution of total velocity magnitudes in backwards facing step with

plasma actuator (A=2000) ... 39

Figure 5.14 Solution of x-component velocity magnitudes in backwards facing step

with plasma actuator (A=2000) ... 39

Figure 5.15 Solution of y-component velocity magnitudes in backwards facing step

with plasma actuator (A=2000) ... 40

Figure 5.16 Visualization via streamline plot technique for backwards facing step with

plasma actuator (A=2000) ... 40

Diagram 1 Magnitude of plasma actuator body force, when plasma actuator is in the

centre of coordinate sytem .. 29

Diagram 2 Time of execution of SIMPLE algorithm depending on size of a square

grid .. 33

Diagram 3 Acceleration of GPU computation over CPU computation 34

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

1. INTRODUCTION

Fluid dynamics is a branch of physics that studies fluid in motion. While basic

equations, Navier-Stokes equation, are know for more then 150 years, new

computational methods of solving them are still being developed today. Throughout

this thesis we will demonstrate possibilites of semi-implicit pressure linked equation

method, or simply called SIMPLE method (algorithm). SIMPLE method is model in

which we can solve velocity fields for steady flows in incompressible fluids. Main idea

of SIMPLE method is to utilize artificial mathematical approach, where we use

pressure field as a correction tool in calculation of velocity fields.

Solving Navier-Stokes equation via SIMPLE method needs a lot of computing

power on central processor units (CPUs), so we will implement SIMPLE method

using graphical processor units (GPUs), via CUDA, programming extension to

C/C++. Possibility of parallel calculation over large number of data elements is being

recognized by more scientific researches every day, since some calculation can be

accelerated by factor 20. We will apply implemented algorithm on two common

problems in fluid dynamics : driven-lid cavity and backwards facing step, as we will

also try to implement calculation of one of newest tecnologies in aerodynamics,

plasma actuators.

Throughout this thesis, we will introduce mathematical background to SIMPLE

method, introduce CUDA and show implementation used in this thesis. Mathematical

background was derived by Andersson[1], so we will summarize and review his work

and comments.

1

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

2. DERIVATION OF EQUATIONS IN SIMPLE METHOD

2.1.Finite control volume

Let us investigate flow in a cube shaped control volume V, bounded by control

surface S, through which there is a finite volume flux of fluid. The control volume may

be fixed in space with the fluid moving through it (Eulerian specification of the flow

field) or the control volume may be defined as a “tracker” of a particular domain of

fluid (Lagrangian specification of the flow field). Furthermore, let us apply

fundamental physical principles to the control volume. Because of this, we do not

need to observe the fluid as a whole, but with the control volume model we only

observe the fluid in the control volume itself and it’s interactions with neighboring

control volumes. [1] The fluid equations that we obtain by applying the fundamental

physical principles to the control volume are in integral form, which can be rewritten

in the form of partial differential equations. The equations obtained from the Eulerian

specification of the flow field are called the conservation form of the governing

equations, while equations obtained from the Lagrangian specification of the flow

field, are called the nonconservation form of the governing equations.

Let us imagine an infinitesimally small fluid element in the flow with a

differential volume dV. We must keep in mind that although this volume is

infinitesimally small, it is large enough to contain a huge number of molecules so that

it can be viewed as a continuous medium. Inside this theoretical framework, we are

in position to define interactions between control volumes, while neglecting

intermolecular interactions, which happened on the scale much smaller than our

computational resolution.

2

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

As already stated, instead observing the whole flow field at once, the fundamental

physical principles are applied to just the infinitesimally small fluid element itself. [1]

2.2 The momentum equation

We will apply one of fundamental physical principles to a model of the flow-

Newton's second law. The resulting equation is called the momentum equation. We

will utilize the Lagrangian specification of the flow field, because this model is

convinient for derivation of momentum equation. We must keep in mind that the

momentum equation can also be derived from other models of control volume. [1]

Figure 2.1 Sketch of surface force applied to finite control volume. Taken from [1]

Newton's second law, when applied to the moving fluid element in Fig. 2.1,

says that the net force on the fluid element equals its mass times the acceleration of

3

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

the element. Since this is a vector relation we can split it into three scalar relations

along the x, y, and z axes. Let us consider only the x component of Newton's second

law, where we will denote x component of force as Fx and x-component of

acceleration as ax.

First, let's define two types of force, classified by their source:

• Body forces; force applied to the content of the control volume. These forces

"act at a distance"; examples are gravitational, electric, and magnetic forces.

[1]

• Surface forces; forces exhibited on the control surface of the fluid element.

There are two surface forces we consider; the pressure distribution acting on

the surface, imposed by the outside fluid surrounding the fluid element and the

shear and normal stress distributions acting on the surface.

Let us denote body force per mass unit acting on fluid as f, with its components fx,

fy and fz. The surface forces in the x-direction exerted on the fluid element are

sketched in Fig. 2.1. The convention will be used in fashion that τij denotes a stress

in the j direction exerted on a plane perpendicular to the i axis.

We will denote components of velocity as u (x component), v (y component) and

w (z component).

Taking in consideration all mentioned above, we can finally write an equation for

total force in x direction

 𝐹! = − !"
!"
+ !!!!

!"
+ !!!"

!"
+ !!!"

!"
𝑑𝑥𝑑𝑦𝑑𝑧 + 𝜌𝑓!𝑑𝑥𝑑𝑦𝑑𝑧 (2.1)

4

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

 where ρ denotes density of fluid. Density of fluid multiplied by x, y and z

differentials equals mass of fluid element, so combining Eq. (2.1) with most common

writing of second Newton's law, we obtain

 𝜌 !"
!"
= − − !"

!"
+ !!!!

!"
+ !!!"

!"
+ !!!"

!"
+ 𝜌𝑓! (2.2)

which is the x component of the momentum equation. In similar fashion we obtain y

component and z component of the momentum equation.

 𝜌 !"
!"
= − !"

!"
+ !!!"

!"
+ !!!!

!"
+ !!!"

!"
+ 𝜌𝑓! (2.3)

 𝜌 !"

!"
= − !"

!"
+ !!!"

!"
+ !!!"

!"
+ !!!!

!"
+ 𝜌𝑓! (2.4)

Note that inside these partial differential equations, we have defined change of

the momentum of the control volume V, solely by interactions with other control

volumes. Since this fluid element is moving with the flow, Eqs. (2.2) to (2.4) are in

nonconservation form. They are scalar equations and are called the Navier-Stokes

equations after M. Navier and G. Stokes.

Isaac Newton stated that shear stress in a fluid is proportional to velocity

gradients.[1] Such fluids are called Newtonian fluids. Throughout this thesis, the fluid

is assumed to be Newtonian. For such fluids, we can write our sheer stresses

 𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

 (2.5)

 𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

 (2.6)

5

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

 𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

 (2.7)

 𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
) (2.8)

 𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
) (2.9)

 𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
) (2.10)

where µ is the molecular viscosity coefficient and λ is the second viscosity

coefficient. V denotes total field of velocity.

2.3 Incompressible Navier-Stokes equation

The incompressible Navier-Stokes equations can be obtained from the

compressible form, by setting density equal to a constant. Considering a continuity

equation for fluids

 !"
!"
+ 𝜌∇𝑽 = 0 (2.11)

and considering that density is constant, we obtain continuity equation for

incompressible fluids

 ∇𝑽 = 0 (2.12)

Using Eqs. (2.2)-(2.10) with Eq. (2.12), we obtain incompressible momentum

equation for each componoent: x, y and z.

6

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

 𝜌 !"

!"
= − !"

!"
+ 2𝜇 !

!!
!!!

+ 𝜇 !
!"

!"
!"
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓! (2.13)

 𝜌 !"
!"
= − !"

!"
+ 2𝜇 !!!

!!!
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓! (2.14)

 𝜌 !"
!"
= − !"

!"
+ 2𝜇 !

!!
!!!

+ 𝜇 !
!"

!"
!!
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓! (2.15)

Using Eq. (2.12) we can further simplify Eqs. (2.13)-(2.15). The idea is to

rewrite differential of one component as function of other two components, and after

some rearranging, rewrite second term on right side of these equations, we obtain

incompressible Navier stokes equations

 ∇𝑽 = 0 (2.16)

 𝜌 !"
!"
= − !"

!"
+ 𝜇∇!𝑢 + 𝜌𝑓! (2.17)

 𝜌 !"
!"
= − !"

!"
+ 𝜇∇!𝑣 + 𝜌𝑓! (2.18)

 𝜌 !"

!"
= − !"

!"
+ 𝜇∇!𝑤 + 𝜌𝑓! (2.19)

Note that in Eqs. (2.16)-(2.17) we have four variables in four equations, which

implies that with these four equations, we close our problem, from mathematical

standpoint of view.

Although, incompressible Navier-Stokes equations are derived from the

compressible Navier-Stokes equations, we cannot use the same numerical technique

for solving both sets of equations. From now on, we deal with the implementation of

the pressure correction algorithm, which will be explained in great detail.

7

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

2.4 Staggered grid

If we write Eq. (2.16) using central spatial differentials, we obtain

!!!!,!!!!!!,!

!!!
+ !!,!!!!!!,!!!

!!!
= 0 (2.20)

There is a big problem solving Eq.(2.20), because it allows checkerboard

distribution of velocities. Same problem occurs in rewriting pressure gradient in the

same fashion as we did with velocities in Eq.(2.20). In Figure 2.2 we see one of the

checkerboard distributions that would satisfy Eq.(2.20), which obviously cannot be

steady solution for any of scalar fields.[1]

Figure 2.2 Checker board distribution which would be achievable with non-staggered grid (Source [8])

8

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

To avoid this problem, we will use staggered grid, shown in Figure 2.3.

 Figure 2.3 Staggered grid used in SIMPLE method. Taken from [4]

In this fashion we will avoid checkerboard distribution, due to using values of

other fields, which are not in same grid points (namely velocity and pressure field). In

compressible fluids, this problem is avoided by calculating densities, while in

incompressible fluids density is set to a constant. Eq.(2.20) rewritten for grid shown in

Figure 2.3 is

!!!!/!,!!!!!!/!,!

!!
+ !!,!!!/!!!!,!!!/!

!!
= 0 (2.21)

2.5 Pressure correction method

Pressure correction method is iterative process (without time interpetation),

that follows next few steps to obtain results.

• Guess the initial pressure field, which we will denote as p*.

• With use of momentum equations, obtain values of u*, v* and w*.

9

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

· Since values of u*, v* and w* were calculated from guessed pressure field, we

must obtain new pressure field, which we will denote as p'. This field is

pressure correction field. Once we add this field to initially guessed field, we

solve the continuity equation

 𝑝 = 𝑝! + 𝑝∗ (2.22)

• In the same fashion as for pressure, we obtain the velocity correction field and

sum them as (2.22)

 𝑢 = 𝑢! + 𝑢! (2.23)

 𝑣 = 𝑣! + 𝑣∗ (2.24)

 𝑤 = 𝑤! + 𝑤∗ (2.25)

• In next iteration, we use values of p, u, v and w as p*, u*, v* and w*.

From now on, we will derive expressions for two-dimensional problem. We will

derive equations for x-component, since y component equations are obtained in the

same fashion and are completely the same when we change spatial differentials. All

derivations untill now were easier using noncoservation equations, but from now on

we will use conservation form of the momentum equations, because they are easier

to implement in numerics. They are obtained from nonconservation equations once

we rewrite time differential (left side of the momentum equation) as substantial

derivative. Those equations in incompressible form (without external force) are

 !"#
!"

+ !"!!

!"
+ !"#$

!"
= − !"

!"
+ 𝜇 !!!

!!!
+ !!!

!!!
 (2.26)

 !"#
!"
+ !"!!

!"
+ !"#$

!"
= − !"

!"
+ 𝜇 !!!

!!!
+ !!!

!!!
 (2.27)

10

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Now, let us consider how can we solve Eq. (2.26), when we apply forward

differential for time, and central differential for spatial derivatives. If we recall Figure

2.3 and focus at grid point (i+1/2,j), we can see that for central differential in third

term on left side of Eq. (2.26), we must somehow obtain values of v in middle grid

boxes. We will use simple linear interpolation to do that. The same fashion applies to

the neccesity of having values of u when solving Eq. (2.27). We can now rewrite Eq.

(2.26)

 (𝜌𝑢)!!!/!.!!!! = (𝜌𝑢)!!!/!.!! + 𝐴Δ𝑡 + !!
!!

𝑝!!!,!! − 𝑝!,!! (2.28)

where A is given by expression

 𝐴 = −
(!!!)!!!/!,!

! !(!!!)!!!/!,!
!

!!!
+

(!"!)!!!/!,!!!
! !(!"!)!!!/!,!!!

!

!!!

 +𝜇
𝑢!!!/!,!! − 2𝑢!!!/!,!! + 𝑢!!!/!,!!

Δ𝑥 ! +
𝑢!!!/!,!!!! − 2𝑢!!!/!,!! + 𝑢!!!/!,!!!!

Δ𝑦 !

𝑣 represents the interpolated value of v inside box.

As mentioned, at the end of each iteration, we set results of velocity and

pressure field, as guessed result in next time iteration. That means we can rewrite

Eq.(2.28)

 (𝜌𝑢∗)!!!/!.!!!! = (𝜌𝑢∗)!!!/!.!! + 𝐴∗Δ𝑡 + !!
!!

𝑝∗!!!,!
! − 𝑝∗!,!

! (2.29)

If we subtract Eq. (2.29) from Eq. (2.28), we obtain

 (𝜌𝑢!)!!!/!.!!!! = (𝜌𝑢!)!!!/!.!! + 𝐴!Δ𝑡 + !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
 (2.30)

11

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

using Eqs.(2.22)-(2.24).

We will obtain a formula for the pressure correction p' by demanding that all

velocity fields must satisfy the incompressible continuity equation. The pressure

correction method is an iterative approach, but results during the iterative process do

not have physical meaning until the last step, as the iteration is not performed along

time. Values for p' provide us with converged solution once d is reasonably small and

it gives us corrected pressure, which will ultimately give us velocity fields which

satisfy the incompressible continuity equation. To summarize, values of p' are a

numerical artifact which helps us obtain the steady solution for the flow field.

With that in mind, we set A’ and (𝜌𝑢)! zero and rewrite Eq. (2.30) as

 (𝜌𝑢!)!!!/!.!!!! = !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
 (2.31)

If we combine Eq. (2.23) and Eq.(2.31), we obtain

 (𝜌𝑢)!!!/!.!!!! = (𝜌𝑢∗)!!!/!.!!!! + !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
 (2.32)

Equation for y component can be obtained in same fashion.

 (𝜌𝑣)!.!!!/!!!! = (𝜌𝑣∗)!.!!!/!!!! + !!
!!

𝑝!!,!!!
! − 𝑝!!,!

!
 (2.33)

Now we can finally obtain pressure correction formula, by combining

Eqs.(2.32)-(2.33) into Eq.(2.21), we get

 𝑎𝑝!,!! + 𝑏𝑝!!!,!! + 𝑏𝑝!!!,!! + 𝑐𝑝!,!!!! + 𝑐𝑝!,!!!! + 𝑑 = 0 (2.34)

12

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

where

𝑎 = 2 !!
!! ! +

!!
!! !

𝑏 = − !!
!! !

𝑐 = − !!
!! !

𝑑 = !
!!

(𝜌𝑢∗)!!!/!,! − (𝜌𝑢∗)!!!/!,! + !
!!

(𝜌𝑣∗)!,!!!/! − (𝜌𝑣∗)!,!!!/!

Eq. (2.34) is called pressure correction formula. During the process of

calculation velocity fields u and v do not satisfy continuity equation. Once velocities

sastisfy continuity equation d will be equal zero, but it is computationally expensive to

reach that degree of convergence, so we aim to get as close to zero value as

possible in reasonable computational time. We can also see that Eq. (2.34) is central

differential representation of Poisson equation, which explains the elliptic behavior of

the pressure correction formula.

13

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

3. GRAPHICS PROCESSOR UNIT AND CUDA

3.1 Introduction

As science advances, so are calculation used in science getting more

complicated and need for higher computing performance is higher then ever. To

adress this problem, graphic processor units (GPU) have been used to perform

calculation. With multiple cores and very high memory bandwidth, todays GPUs offer

strong resources for both graphics and non-graphics prosessing.

As GPUs main objective is graphics rendering, it was designed for highly

parallel and intensive computation. Distribution of transistors in CPUs and GPUs is

shown in Figure 3.1, where ALU stands for arithmetig-logic unit, which are transistors

used in calculations.

Figure 3.1 Transistor distribution in CPU and GPU. Taken from [5]

GPUs are well-suited to adress problems that can be expressed as data-

parallel computations as same program can be executed over many data elements in

parallel. Strong advantage of CPUs over GPUs is memory transfer and flow control in

programs, so the best way to use both of technologies is via heterogeneous

14

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

programming or hybrid programming. Idea is to let GPUs handle arithmetic and logic

tasks, while minimizing flow control and memory transfer which is done by CPUs.

3.2 CUDA

CUDA [5] stands for Compute Unified Device Architecture and is used as

software architecture for issuing and managing computations on the GPUs as data-

parallel computing device. It was designed as an extension to C and C++

programming language. CUDA also provides ability to read and write data at any

location in DRAM (dynamic random-access memory), just like on a CPU.

When programmed through CUDA, GPUs are used in identically as CPUs, but

due to different transistor distribution, it can handle many operations in the same

time. In further text, we will refer to CPUs as a host, while we will call GPUs device.

What we want to achieve is to let host deal with the majority of code, while device

while be used only for calculating arithmetical steps of the code. Both host and

device maintain their own DRAM, referred to as host memory and device memory.

Execution of kernel is organized as a grid of thread blocks, as shown in Figure 3.2.

15

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 3.2 Visualization of grid hierarchy in kernel. Taken from [5]

A thread block is a collection of threads that can cooperate together by sharing

data through some fast shared memory and synchronizing their exectuion to

coordinate memory accesses. Each thread is identified by its thread ID, which is the

thread number inside it’s own block. Blocks can be organized as one-, two- or

16

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

three-dimensional array of threads, where threads are then identified as one-, two- or

three-component index.

There is a limited maximum number of threads that a block can contain, but

then kernel can be used to execute itself over grid of blocks, so total number of

threads in execution can be larger than maximum size of a block. As thread, each

block is identified by its block ID, which is the block number within the grid. Grids can

be organized as blocks, hence grid can have a two-dimensional array of blocks, while

only new GPUs can have three-dimensional array of blocks.

3.3 Memory model and memory types

A thread that execute on the device has only access to the device's DRAM

and on-chip memory. GPUs have few memory types and memory model which

defines communication between memory of different types. Memory types are

classified as [5]:

• Global memory – is the largest memory space on the device and is used for

storage of data, once they are downloaded from host. Speed of accesing

global memory is slower then is with shared memory (explained below), so it's

optimal to use global memory only for data transaction between host and

device. It's lifetime is application execution time

• Local memory – is memory that resides on device, as global memory. Local

memory is a part of global memory that is created for a single thread, so it has

lifetime of thread execution.

• Shared memory – is on-chip memory and because of that is much faster than

local or global memory. Shared memory is created for every block, hence

17

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

block can only access data from it's respective shared memory. It has a

lifetime of kernel execution.

• Constant memory – is also on-chip memory and is equally fast as shared

memory, but device can only read this data, while host can change it. Unlike

shared memory, constant memory can be accessed by whole grid and has

lifetime of application execution time.

• Registers – are memory specific for each processor, so that each processor

has right to write and read fomt its own registers. Register is accessable by

particular thread and it's lifetime is kernel execution time.

With all this in mind, we can already get an idea how to approach memory on

GPUs. Idea is to use global memory for transaction of data between host and device,

but execute calculation on shared memory. Figure 3.3 shows summary of memory

types and their communication.

18

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 3.3 Memory model of GPU. Taken from [5]

3.4 Execution configuration

Any invocation of a kernel must be specified with the execution configuration,

which is done with dim3 variables. Dim3 variables is three-component vector which

components can be accessed as variable_name.x (y or z). Execution configuration is

19

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

specified in form <<<Dg, Db, Ns>>> between function name and argument list,

where (definitions are copied from [5]):

• Dg is of type dim3 and specifies the dimension and size of the grid, such that

Dg.x * Dg.y eqauls the number of blocks being lunched

• Db is of type dim3 and specifies the dimension and size of each block such

that Db.x * Db.y * Db.z equals the number of threads per block

• Ns specifies the number of bytes in shared memory that is danymically

allocated per block for this call in adition to the statically allocated memory. It

is an optional argument which defaults to 0.

Kernels are declared with argument __global__ void in front of function name

and argument list, so function declared as:

• __global__ void Function (type of argument* argument)

must be invoked as

• Function <<<Dg, Db, Ns >>> (argument)

20

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

4. SIMPLE ALGORITHM

4.1 Summary of equations

In this chapter, we will present numerical procedure for solving equations

derived in second chapter of this thesis. We will also introduce Reynolds number

(Re), with which we will parameterize density ρ and molecular viscosity coefficient µ.

Reynolds number will be also used for scaling space and time parameters. From now

on we will denote partial derivatives as subsribts. Let us summarize equations we are

solving in two-dimensional form:

 𝑢! = −𝑢!! − 𝑢𝑣 ! − 𝑝! +
!
!"

𝑢!! + 𝑣!! + 𝑓! (4.1)

 𝑢! = −𝑣!! − 𝑢𝑣 ! − 𝑝! +
!
!"

𝑢!! + 𝑣!! + 𝑓! (4.2)

 𝑢! + 𝑣! = 0 (4.3)

 ∇!𝑝 = ∇𝑉 (4.4)

Eq. (4.4) is the same equation as Eq. (2.34). It may be confusing considering

the right side should be zero, once aproximation of incompressibility is taken into

consideration, but velocities which will be input inside Eq. (4.4) don't satisfy continuity

equation, so we are obtaining their corrections while solving Eq. (4.4).

If there are no forces applied to fluid, values of fx and fy are zero.

In Table 1. we will summarize all the differentials that were used to solve Eqs.

(4.1)-(4.4). If we recall from Chapter 2., we used forward differential for time

derivatives and central differentials for spatial derivatives.

21

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Table	1	Summary	of	partial	derivative	and	it's	respective	differentials	

 Equations which will be iterated and solved using GPUs are:

 𝑢!!!.!.!!!! = 𝑢!!!.!.!! + Δ𝑡 𝐴 − (Δ𝑥)!! 𝑝!!!,!! − 𝑝!,!! (4.5)

 𝐴 = 𝑎! + 𝑅𝑒!!(𝑎! + 𝑎!) (4.6)

 𝑎! = −
(!!)!!!.!,!

! !(!!)!!!.!,!
!

!!!
−

(!!)!!!.!,!!!
! !(!!)!!!.!,!!!

!

!!!
 (4.7)

 𝑎! = −
!!!!.!,!
! !!!!!!.!,!

! !!!!!.!,!
!

!! ! (4.8)

 𝑎! = −
!!!!.!,!!!
! !!!!!!.!,!

! !!!!!.!,!!!
!

!! ! (4.9)

 𝑣!.!!!.!!!! = 𝑣!.!!!.!! + Δ𝑡 𝐵 − (Δ𝑦)!! 𝑝!,!!!! − 𝑝!,!! (4.10)

 𝐵 = 𝑏! + 𝑅𝑒!!(𝑏! + 𝑏!) (4.11)

22

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

 𝑏! = −
(!!)!,!!!.!

! !(!!)!,!!!.!
!

!!!
−

(!!)!!!,!!!.!
! !(!!)!!!,!!!.!

!

!!!
 (4.12)

 𝑏! = −
!!,!!!.!
! !!!!,!!!.!

! !!!,!!!.!
!

!! ! (4.13)

 𝑏! = −
!!!!,!!!.!
! !!!!,!!!.!

! !!!!!,!!!.!
!

!! ! (4.14)

 𝑝!,!! = −𝑎!! 𝑏 𝑝!!!,!! + 𝑝!!!,!! + 𝑐 𝑝!,!!!! + 𝑝!,!!!! + 𝑑 (4.15)

 𝑎 = 2Δ𝑡 !
!!!

+ !
!!!

 (4.16)

 𝑏 = − !!
!!!

 (4.17)

 𝑐 = − !!
!!!

 (4.18)

 𝑑 = !
!!!

𝑢!!!.!,! − 𝑢!!!.!,! + !
!!!

𝑣!,!!!.! − 𝑣!,!!!.! (4.19)

 𝑢! = − !!
!!

𝑝!!!,!! + 𝑝!,!! (4.20)

 𝑣! = − !!
!!

𝑝!,!!!! + 𝑝!,!! (4.21)

Alghorithm which will be used is:

1. Solve Eqs. (4.5)-(4.14)

2. Iterate Eqs. (4.15)-(4.19). Number of iterations depends on precision that we want

to achieve. Lower number of iterations of this step may result in need for higher

23

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

number of iterations of whole algorithm. However, final results, if converged, must

be the same. In this thesis, we iterated this step 30 times.

3. Using Eqs (4.20)-(4.21) find the correction of velocities.

4. Add valus of p' to original p

5. Repeat steps 1-4

4.2 Data transfer between global and shared memory on GPU

While discussing memory types CUDA can access, we mentioned that shared

memory is fastest, together with constant memory which cannot be changed from

device. Before solving any of Eqs. (4.5)-(4.22), we will copy all of our data to shared

memory, where each member of data will represent one thread. As shared memory is

unique to each block inside grid, we must be carefull of possible memory malfunction.

Let's imagine we are working with two-dimensional square grid, with dimension 4.

BlockID BlockID BlockID BlockID

(0,3) (1,3) (2,3) (3,3)

BlockID BlockID BlockID BlockID

(0,2) (1,2) (2,2) (3,2)

BlockID BlockID BlockID BlockID

(0,1) (1,1) (2,1) (3,1)

BlockID BlockID BlockID BlockID

(0,0) (1,0) (2,0) (3,0)

Figure 4.1 Block identification system in two-dimensional grid

Lets focus on block with BlockID (1,1), and let's assume each block contains

2*2 threads. Considering Eqs.(4.5)-(4.22) we can see that each data member needs

all adjacent data (first neighbors) to be calculated. To do so, we need to declare two-

24

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

dimensional array in shared memory for each block, but with dimension 4*4, because

we need to copy adjacent rows and columns so calculation can be done. In Figure

4.2, grey squares will represent data that shared memory of BlockID(1,1) must

contain (data/threads of non-adjacent blocks won't be shown), for calculation to be

correct.

BlockID BlockID BlockID BlockID

(3,0) (3,1) (2,3) (3,3)

BlockID BlockID BlockID

(2,0)

(2,2) (3,2)

 BlockID BlockID

(1,1)

(3,1)

BlockID BlockID BlockID

(0,0)

(2,0) (3,0)

Figure 4.2 Example of necessary memory transfer from global memory to shared memory in SIMPLE

algorithm

In this thesis, we are using one-dimensional arrays on host that are

downloaded to device as one-dimensional arrays. With memory transfer to shared

memory, we transform them in two-dimensional arrays for less complicated

implementation of Eqs. (4.5)-(4.21). Reason for governing data as one-dimensional

arrays on host and device is because of faster download and upload of data from

device.

4.3 Visualization

For visualization of our data, we will use Paraview. Paraview is an open-

source, multi-platform data analysis and visualization application. We will visualize

25

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

magnitudes of velocities and their respective components. One of the techinques of

visualization which we will use is streamline plot technique and it is incorporated

inside Paraview. Streamline plot technique is used for incompressible fluids, where

we calculate stream function and with lines (called streams) we connect grid

positions of same stream function value. It is defined as :

 Ψ = 𝑢𝑑𝑦 + 𝑣𝑑𝑥!
! (4.22)

where shift from a to b is infinitesimal. Streams we get on the plot are good indication

of fluid trajectory, vortexes, turbulencies etc. For visualiazing our data in Paraview,

we must calculate, with linear interpolation, values of velocities in grid points (where

we calculated pressure field) and then write them in .vtk file (this is shown in

Appendix A in function PRINT_VECT_VTK).

4.4 Fluid mechanics problems

In this thesis, we are going to apply SIMPLE algorithm to two common fluid

mechanics problems.

Driven-lid cavity is one of the most known problems in fluid mechanics and is

widely used as test for new solutions in computational fluid dynamics. Driven lid

cavity is two-dimensional closed box with one of lids moving (in this thesis it will be

bottom lid), causing fluid inside the box to move. We will also use driven-lid cavity as

test for our calculation and also for test of speed-up we achieved using CUDA and

GPUs over CPUs.

Boundary conditions for driven lid cavity with dimensions [A*B]are:

26

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

• No-slip condition, hence velocities perpendicular to the normal vector of

boundaries must be zero, with exeption on moving lid

u(x,0)=1

u(x,B)=0

v(0,y)=0

v(A,y)=0

• Directional derivatives of pressure on normal vectors of boundary wall

must be zero:

p(x,0)=p(x,1)

p(x,B)=p(x,B-1)

p(0,y)=p(1,y)

p(B,y)=p(B-1,y)

• There is no momentum loss in fluid while reflecting from boundary.

Considering staggered grid that is used, we can see that for reflection of

fluid there is no true boundary condition, because last grid points of

velocities perpendicular to the boundaries (only velocities that could reflect

due to no-slip condition) are not on the wall. We obtain this boundary

condition with linear interpolation, by setting coefficent of proportion

between last grid point and his adjacent grid point to -2/3

u(0.5,y)=-2*u(1.5,y)/3

u(A-0.5,y)=-2*u(A-1.5,y)/3

v(x,0.5)=-2*v(x,1.5)/3

v(x,B-0.5)=-2*v(x,B-1.5)/3

Backwards facing step is another common problem in computational fluid

dynamics. It consists of inflow on left side, outflows on top and right side and

27

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

boundary wall on the bottom side with backwards facing step. We will also implement

calculation of body force in backwards facing step, which will be described later.

Figure 4.3 Sketch of backwards facing step, where full lines represent solid boundary and dotted

line represents open boundary (no reflection of fluid on this boundary)

Boundary conditions for backwards facing step are same on the boundary

wall, while inflow and outflows have own set of boundary conditions:

• We will set u=1, v=0 and p=0 on inflow boundary

• Outflow boundary conditions is zero value of directive derivatives of u, v

perpendicular to boundary and value of p is zero.

Body force that we will apply in backwards facing step is force excelled by

plasma actuator. Plasma actuator is technology used on airplanes to reduce

turbulencies and noise made by plane [2]. Force components fx and fy are defined by

next equations

 𝑓! = 𝐴 ∗ !!

!!!!!!!
𝑒𝑥𝑝 − !!!!!!!!!

!!!!!!!

!
− 𝛽! 𝑦 − 𝑦! ! (4.23)

 𝑓! = 𝐴 ∗ !!

!!!!!!!
𝑒𝑥𝑝 − !!!!

!!!!!!!

!
− 𝛽! 𝑦 − 𝑦! ! (4.24)

where Fx=2.0, Fy=2.6, yb=0.00333, 𝛽!=72000 and 𝛽!=900000 [2]. We will define

strength of this repulsive force via parametar A.

28

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Force described by Eqs. (4.24)-(4.25) is repulsive low range force and its

magnitude is shown in Diagram 1.

Diagram 1 Magnitude of plasma actuator body force, when plasma actuator is in the centre of
coordinate sytem

29

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

5. RESULTS

5.1 Driven-lid cavity

Solutions for driven –lid cavity (velocity fields) are shown in Figure 5.1, 5.2

and 5.3, while Figure 5.4 represents results for streamline plot technique. Calculation

was done in resolution 100*100 with Reynolds number set to 400.

Figure 5.1 Solution of total velocity magnitudes in Driven-lid cavity

30

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.2 Solution of x-component velocitiy magnitudes in Driven-lid cavity

Figure 5.3 Solution of y-component velocitiy magnitudes in Driven-lid cavity

31

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.4 Visualization via streamline plot technique for Driven-lid cavity

This results confirm SIMPLE algorithm as valid computational method for

solving incompressible Navier-Stokes equation. Also stremline plot technique shows

two vortexes that are characteristic for square driven-lid cavity problem. One issue

with using Paraview as streamline plot technique is that it calculates stream function

in direction of one line, so full display with streams is hardly achievable. Now that our

results are postivie, lets see the acceleration that CUDA has provided us and what

size of block is most optimal for this computation. We will test accelartion on 5000

32

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

iterations, since number of iterations doesn't affect acceleration. We will define

accelartion is result of dividing speeds achieved by CPU and GPU.

Diagram 2 Time of execution of SIMPLE algorithm depending on size of a square grid

33

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Diagram 3 Acceleration of GPU computation over CPU computation

CPU that was used is Intel(R) Core(TM) i5-2430M @ 2.40 GHz.

GPU that was used is GT200 @ 1.3 GHz, (nVidia Tesla S1070 card)

We can see from Diagram 3 that at lowest resolution GPU is already

outperforming CPU by minimum factor of 7. There is no explanation for lower

accelaration of program execution at resolution 160*160, as CPU somehow

managed to do it faster then expected (Diagram 2).

34

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

5.2 Backwards facing step

Backwards facing step was calculated over grid of dimensions 1000*200, with

value of Reynolds number 400. Results are shown in Figures (5.5)-(5.8). It's

impossible to change font size of axis numbers in Paraview at the moment, so

dimension on y-axis will be hard to read (dimension is 0.2).

Figure 5.5 Solution of total velocity magnitudes in backwards facing step

Figure 5.6 Solution of x-component velocity magnitudes in backwards facing step

35

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.7 Solution of y-component velocity magnitudes in backwards facing step

Figure 5.8 Visualization via streamline plot technique for backwards facing step

For simulation of plasma actuator we will use two values of parameter A,

A=1000 and A=2000. Since repulsive force of plasma actuator decays rapidly, we will

only add force in the area around actuator as shown in Diagram 1.

Results for backwards facing step with plasma actuator located at x=0.08,

y=0.04 (using color distribution of Figures (5.5)-(5.8)) are shown in next figures.

36

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.9 Solution of total velocity magnitudes in backwards facing step with plasma actuator (A=1000)

Figure 5.10 Solution of x-component velocity magnitudes in backwards facing step with plasma

actuator (A=1000)

37

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.11 Solution of y-component velocity magnitudes in backwards facing step with plasma

actuator (A=1000)

Figure 5.12 Visualization via streamline plot technique for backwards facing step with plasma
actuator (A=1000)

38

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.13 Solution of total velocity magnitudes in backwards facing step with plasma actuator (A=2000)

Figure 5.14 Solution of x-component velocity magnitudes in backwards facing step with plasma

actuator (A=2000)

39

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

Figure 5.15 Solution of y-component velocity magnitudes in backwards facing step with plasma

actuator (A=2000)

Figure 5.16 Visualization via streamline plot technique for backwards facing step with plasma
actuator (A=2000)

Results shown in Figures (5.9)-(5.16) show some expected results for plasma

actuators. When calculating with A=1000, we see we have decreased size of vortex

that was created behind the step and with A=2000 we decreased it even more. We

have also achieved that streams get closer to the backwards facing step, which is

also expected [2], but what must be noted is that we have achieved closer streams

with A=1000, then with A=2000. These results still need experimental conformation,

40

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

since plasma actuators on backwards facing step aren't commonly used and

scientific publications about this subject are almost nonexistent.

41

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

6. DISCUSSION AND CONCLUSION

As stated in introduction, SIMPLE method can only solve steady flows, hence,

no time-dependant forces or boundary conditions can be applied in this

computation, which narrows greatly use of this kind of calculation. Restriction of

incompressibility must also be taken seriously, as it is very unstable aproximation

in some calculations, especially at high values of Reynolds number (we used

value of 400 for all of our calculation).

One look at Diagram 2., shows that future of computational fluid dynamics is

usage of CUDA and GPUs. Even at lowest resolution, acceleration factor is 7 and

today's resolution used in computation fluid dynamics are way higher, hence,

GPUs could be even more usefull, as they were in this calculation, which would

lead to higher precision of calculation in more then even 20 times less time of

execution.

Results presented for driven lid cavity and backwards facing step show that

implementation of SIMPLE algorithm was correct, since there is a lot of results

available via scientific publications. Result for plasma actuators still need

experimental confirmation and simulation of plasma actuators are nowadays

greatly discussed in science community, since it is fairly new research area. As

SIMPLE method cannnot solve unsteady flows, it is very unlikeable that this

approach will be used in future, because most applications of plasma actuators

demand time dependent force and not constant force as used in this thesis.

One major flaw of code used in this thesis is that it can only solve problems

with flat boundaries and it would require major upgrade to calculate fluid flow

around non-flat boundaries. What must be noted also is that acceleration we

42

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

obtained using CUDA could be higher, since some parts of code could probably

be more memory optimized, but even this version of code is capable of executing

calculation more then ten times faster then CPU execution of code.

43

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

APPENDIX A – Code
#include <stdio.h> #include
<stdlib.h> #include
<string.h> #include
<cuda.h> #include
<cuda_runtime.h> #include
<math.h> #include <time.h>

#define BD 20
#define BX 50
#define BY 10
#define NX 1000
#define NY 200
#define KT 5
#define AI -2./3.
#define DT 0.00005
#define RX 100
#define RY 40
#define FX 0.7926
#define FY 0.6097
#define Bx 72000
#define By 900000
#define yb 0.00333
#define IY 40
#define IX 80
#define AMP 2000

#define Re 400
#define GR 0.0001
#define T 60000
__global__ void inix (float *a)
{

__shared__ float s[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;
if(iu<RX && ju>RY)
s[i][j]=1.;
else
s[i][j]=0.;
a[k]=s[i][j];

}

__global__ void ini (float *a)
{

__shared__ float s[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;

44

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

int ju=j0+j;
int k=iu *NY+ju;
s[i][j]=0.;
a[k]=s[i][j];

}

__global__ void rubnix (float *a)

{

__shared__ float s[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;
s[i][j]=a[k];
__syncthreads();
if(iu==0 &&
ju>RY) s[i][j]=1.;
if(iu==NX-2)
s[i][j]=s[i-1][j];
__syncthreads();
if(ju==0)
s[i][j]=0.; if(ju==NY-
1) s[i][j]=s[i][j-1];
if(ju==RY &&
iu<RX) s[i][j]=0.;

if(iu==RX && ju<=RY)
s[i][j]=s[i+1][j]*AI;
__syncthreads();
a[k]=s[i][j];

}

__global__ void rubniy (float *a)

{

__shared__ float s[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;
s[i][j]=a[k];
__syncthreads();
if(ju==0)
s[i][j]=AI*s[i][j+1];
if(ju==NY-2)
s[i][j]=s[i][j-1];
__syncthreads();
if(iu==0)

45

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

s[i][j]=0.; if(iu==NX-1)
s[i][j]=s[i-1][j];
if(ju==RY &&
iu<=RX)
s[i][j]=AI*s[i][j+1];
if(iu==RX && ju<RY)
s[i][j]=0.;
__syncthreads();
a[k]=s[i][j];

}

__global__ void rubnip (float *a)

{

__shared__ float s[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;
s[i][j]=a[k];
__syncthreads();
if(ju==0 && iu!=0 && iu!=NX-1)
s[i][j]=s[i][j+1];
if(ju==NY-1 && iu!=0 && iu!=NX-1)
s[i][j]=0.0;
if(iu==0 && ju!=0 && ju!=NY-1)
s[i][j]=0;
if(iu==NX-1 && ju!=0 && ju!=NY-1)
s[i][j]=0.;
if(iu==RX && ju<=RY)
s[i][j]=s[i+1][j];
if(iu<=RX && ju==RY)
s[i][j]=s[i][j+1];
__syncthreads();
a[k]=s[i][j];

}

__global__ void US (float *a, float *b, float *c, float *d)

{

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], u1[BD+2][BD+2];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i+1][j+1]=a[k];
if(i==0 && iu!=0)

46

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

u[0][j+1]=a[k-NY];
if(i==BD-1 && iu!=NX-1)
u[BD+1][j+1]=a[k+NY];
if(j==0 && ju!=0)
u[i+1][0]=a[k-1];
if(j==BD-1 && ju!=NY-1)
u[i+1][BD+1]=a[k+1];
__syncthreads();

v[i+1][j+1]=b[k];
if(i==0 && iu!=0)
v[0][j+1]=b[k-NY];
if(i==BD-1 && iu!=NX-1)
v[BD+1][j+1]=b[k+NY];
if(j==0 && ju!=0)
v[i+1][0]=b[k-1];
if(j==BD-1 && ju!=NY-1)
v[i+1][BD+1]=b[k+1];
__syncthreads();

p[i+1][j+1]=c[k];
if(i==0 && iu!=0)
p[0][j+1]=c[k-NY];
if(i==BD-1 && iu!=NX-1)
p[BD+1][j+1]=c[k+NY];
if(j==0 && ju!=0)
p[i+1][0]=c[k-1];
if(j==BD-1 && ju!=NY-1)
p[i+1][BD+1]=c[k+1];
__syncthreads();
if(iu<NX-2 && iu>0 && ju<NY-1 && ju>0 && ((iu<=RX && ju<=RY)!=1)){ u1[i+1][j+1]=-
((pow(u[i+2][j+1],2)-pow(u[i][j+1],2))*NX/2.0f+(u[i+1][j+2]*0.5*(v[i+1][j+1] + v[i+2][j+1])-

u[i+1][j]*0.5*(v[i+1][j] + v[i+2][j]))*NY*KT/2.0); u1[i+1][j+1]=u1[i+1][j+1]+(1.0/Re)*((u[i+2][j+1]-
2.0*u[i+1][j+1]+u[i][j+1])*NX*NX+(u[i+1][j+2]-

2.0*u[i+1][j+1]+u[i+1][j])*NY*NY*KT*KT);
u1[i+1][j+1]=u[i+1][j+1]+DT*(u1[i+1][j+1]-1.0*NX*(p[i+2][j+1]-p[i+1][j+1]));
if(ju-IY<15)
{

if((iu-IX)<15 && (iu-IX)>=0) u1[i+1][j+1]=u1[i+1][j+1]+AMP*DT*(FX*exp(0-((iu-IX+0.5-
ju+IY)*0.001)*((iu-IX+0.5-

ju+IY)*0.001)/(((ju-IY)*0.001+yb)*((ju-IY)*0.001+yb))-Bx*0.001*0.001*(ju-IY)*(ju-IY)));
if((iu-IX)>-15 && (iu-IX)<0)

u1[i+1][j+1]=u1[i+1][j+1]-AMP*DT*(FX*exp(0-((iu-IX+0.5-ju+IY)*0.001)*((iu-IX+0.5-
ju+IY)*0.001)/(((ju-IY)*0.001+yb)*((ju-IY)*0.001+yb))-Bx*0.001*0.001*(ju-IY)*(ju-IY)));

}
d[k]=u1[i+1][j+1];}
else
d[k]=a[k];
__syncthreads();

}

__global__ void VS (float *a, float *b, float *c, float *d)

{

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2],
v1[BD+2][BD+2]; int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;

47

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i+1][j+1]=a[k];
if(i==0 && iu!=0)
u[0][j+1]=a[k-NY];
if(i==BD-1 && iu!=NX-1)
u[BD+1][j+1]=a[k+NY];
if(j==0 && ju!=0)
u[i+1][0]=a[k-1];
if(j==BD-1 && ju!=NY-1)
u[i+1][BD+1]=a[k+1];
__syncthreads();

v[i+1][j+1]=b[k];
if(i==0 && iu!=0)
v[0][j+1]=b[k-NY];
if(i==BD-1 && iu!=NX-1)
v[BD+1][j+1]=b[k+NY];
if(j==0 && ju!=0)
v[i+1][0]=b[k-1];
if(j==BD-1 && ju!=NY-1)
v[i+1][BD+1]=b[k+1];
__syncthreads();

p[i+1][j+1]=c[k];
if(i==0 && iu!=0)
p[0][j+1]=c[k-NY];
if(i==BD-1 && iu!=NX-1)
p[BD+1][j+1]=c[k+NY];
if(j==0 && ju!=0)
p[i+1][0]=c[k-1];
if(j==BD-1 && ju!=NY-1)
p[i+1][BD+1]=c[k+1];
__syncthreads();

if(iu<NX-1 && iu>0 && ju<NY-2 && ju>0 && ((iu<=RX && ju<=RY)!=1)){
v1[i+1][j+1]=-((v[i+2][j+1]*0.5*(u[i+1][j+1] + u[i+1][j+2])-v[i][j+1]*0.5*(u[i][j+1] +

u[i][j+2]))*NX/2.0+(v[i+1][j+2]*v[i+1][j+2]-v[i+1][j]*v[i+1][j])*KT*NY/2.0);
v1[i+1][j+1]=v1[i+1][j+1]+(1.0f/Re)*((v[i+2][j+1]-2.0f*v[i+1][j+1]+v[i][j+1])*NX*NX+(v[i+1][j+2]-

2.0f*v[i+1][j+1]+v[i+1][j])*NY*NY*KT*KT);
v1[i+1][j+1]=v[i+1][j+1]+DT*(v1[i+1][j+1]-(1.0f*NY*KT)*(p[i+1][j+2]-
p[i+1][j+1])); if(ju-IY<15)
{

if((iu-IX)<15 && (iu-IX)>-15) v1[i+1][j+1]=v1[i+1][j+1]+AMP*DT*(FY*exp(0-(iu-
IX)*0.001*0.001*(iu-IX)/(((ju-

IY+0.5)*0.001+yb)*((ju-IY+0.5)*0.001+yb))-By*(ju+0.5-IY)*0.001*0.001*(ju+0.5-IY)));

}
d[k]=v1[i+1][j+1];}
else
d[k]=b[k];
__syncthreads();

48

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

}

__global__ void poiss (float *a, float *b, float *c, float *d)
{

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], corr[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i+1][j+1]=a[k];
if(i==0 && iu!=0)
u[0][j+1]=a[k-NY];
if(i==BD-1 && iu!=NX-1)
u[BD+1][j+1]=a[k+NY];
if(j==0 && ju!=0)
u[i+1][0]=a[k-1];
if(j==BD-1 && ju!=NY-1)
u[i+1][BD+1]=a[k+1];
__syncthreads();

v[i+1][j+1]=b[k];
if(i==0 && iu!=0)
v[0][j+1]=b[k-NY];
if(i==BD-1 && iu!=NX-1)
v[BD+1][j+1]=b[k+NY];
if(j==0 && ju!=0)
v[i+1][0]=b[k-1];
if(j==BD-1 && ju!=NY-1)
v[i+1][BD+1]=b[k+1];
__syncthreads();

p[i+1][j+1]=c[k];
if(i==0 && iu!=0)
p[0][j+1]=c[k-NY];
if(i==BD-1 && iu!=NX-1)
p[BD+1][j+1]=c[k+NY];
if(j==0 && ju!=0)
p[i+1][0]=c[k-1];
if(j==BD-1 && ju!=NY-1)
p[i+1][BD+1]=c[k+1];
__syncthreads();

corr[i][j]=c[k];
__syncthreads();

if(iu>0 && ju >0 && iu<NX-1 && ju<NY-1 && ((iu<=RX && ju<=RY)!=1)){
c[k] = -(1.0/(2*(DT*NX*NX+DT*NY*NY*KT*KT)))*((-DT*NX*NX)*p[i+2][j+1]+(-

DT*NX*NX)*p[i][j+1]+(-DT*NY*NY*KT*KT)*p[i+1][j+2]+(-
DT*NY*NY*KT*KT)*p[i+1][j]+(1.0*NX)*(u[i+1][j+1] - u[i][j+1]) + (1.0*NY*KT)*(v[i+1][j+1]-v[i+1][j]));

}
corr[i][j]-=c[k];
if(corr[i][j]<0)
corr[i][j]*=(-1);
d[k]=corr[i][j];

49

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

__syncthreads();

}

__global__ void korek (float *a, float *b, float *c)
{

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], corr[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i+1][j+1]=a[k];
if(i==0 && iu!=0)
u[0][j+1]=a[k-NY];
if(i==BD-1 && iu!=NX-1)
u[BD+1][j+1]=a[k+NY];
if(j==0 && ju!=0)
u[i+1][0]=a[k-1];
if(j==BD-1 && ju!=NY-1)
u[i+1][BD+1]=a[k+1];
__syncthreads();

v[i+1][j+1]=b[k];
if(i==0 && iu!=0)
v[0][j+1]=b[k-NY];
if(i==BD-1 && iu!=NX-1)
v[BD+1][j+1]=b[k+NY];
if(j==0 && ju!=0)
v[i+1][0]=b[k-1];
if(j==BD-1 && ju!=NY-1)
v[i+1][BD+1]=b[k+1];
__syncthreads();

p[i+1][j+1]=c[k];
if(i==0 && iu!=0)
p[0][j+1]=c[k-NY];
if(i==BD-1 && iu!=NX-1)
p[BD+1][j+1]=c[k+NY];
if(j==0 && ju!=0)
p[i+1][0]=c[k-1];
if(j==BD-1 && ju!=NY-1)
p[i+1][BD+1]=c[k+1];
__syncthreads();

if(iu>0 && iu<NX-2 && ((iu<=RX && ju<=RY)!=1)){
u[i+1][j+1]-=DT*NX*(p[i+2][j+1]-p[i+1][j+1]);
a[k]=u[i+1][j+1];}

if(ju>0 && ju<NY-2 && ((iu<=RX && ju<=RY)!=1)){
v[i+1][j+1]-=DT*NY*KT*(p[i+1][j+2]-p[i+1][j+1]);
b[k]=v[i+1][j+1];}
__syncthreads();

50

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

}

__global__ void copy (float *a, float *b)
{

__shared__ float u[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i][j]=a[k];
__syncthreads();

b[k]=u[i][j];
__syncthreads();

}

__global__ void suma (float *a, float *b)
{

__shared__ float u[BD][BD];
int i = threadIdx.x;
int j = threadIdx.y;
int I = blockIdx.x;
int J = blockIdx.y;
int i0=I*BD;
int j0=J*BD;
int iu=i0+i;
int ju=j0+j;
int k=iu *NY+ju;

u[i][j]=a[k];
__syncthreads();

b[k]+=u[i][j];
__syncthreads();

}

void PRINT_VECT_VTK(int imax, int jmax, float U[NX][NY], float V[NX][NY], float *x, float *y)

{ int i,j,k;

int nx,ny,nz;

float z = 0.0;

FILE *vect_field;

nx = imax;

ny = jmax;

nz = 1;

51

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

/* File grid.vtk*/

if((vect_field = fopen("a.vtk", "w")) ==

NULL) printf("The grid file could not be

open\n"); else{

fprintf(vect_field, "# vtk DataFile Version

2.0\n"); fprintf(vect_field, "Sample rectilinear

grid\n"); fprintf(vect_field, "ASCII\n");

fprintf(vect_field, "DATASET RECTILINEAR_GRID\n");

fprintf(vect_field, "DIMENSIONS %d %d %d\n", nx, ny,

nz); fprintf(vect_field, "X_COORDINATES %d float\n", nx);

for(i=0; i<=nx-1; i++)

fprintf(vect_field, "%f\n", x[i]);

fprintf(vect_field, "Y_COORDINATES %d float\n",

ny); for(j=0; j<=ny-1; j++)

fprintf(vect_field, "%f\n", y[j]);

fprintf(vect_field, "Z_COORDINATES %d float\n",

nz); fprintf(vect_field, "%f\n", z);

fprintf(vect_field, "POINT_DATA %d\n", (nx)*(ny)*(nz));

fprintf(vect_field, "VECTORS vectors float\n");

for(i=0; i<=ny-1; i++)

for(j=0; j<=nx-1; j++){

fprintf(vect_field, "%f\t %f\t %f\n", U[j][i], V[j][i], 0.0);

}

}

fclose(vect_field);

}

int main (void)
{

clock_t t2,t1;
FILE *fp, *fp1, *fp2;
float a[NX*NY], *a_d, *a_d1, b[NX*NY], *b_d, *b_d1, c[NX*NY], *c_d, *c_d1, corr[NX*NY], *corr_d,

max;

52

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

float dxx[NX], dyy[NY], xi[NX][NY], yi[NX][NY], dx1, dy1;
int j,i,t, N=NX*NY, x, br, k, k1;
float rop;
rop=DT*NY*NY;
dim3 blockDim, gridDim;
blockDim.x=BD;
blockDim.y=BD;
gridDim.x=BX;
gridDim.y=BY;
fp=fopen("x.dat", "w");
fp1=fopen("y.dat", "w");
fp2=fopen("tlak.dat", "w");

t1=clock();
cudaMalloc((void **)&a_d, sizeof(float)*NX*NY);
cudaMalloc((void **)&a_d1, sizeof(float)*NX*NY);

cudaMalloc((void **)&b_d, sizeof(float)*NX*NY);
cudaMalloc((void **)&b_d1, sizeof(float)*NX*NY);

cudaMalloc((void **)&c_d, sizeof(float)*NX*NY);
cudaMalloc((void **)&c_d1, sizeof(float)*NX*NY);

cudaMalloc((void **)&corr_d, sizeof(float)*NX*NY);

inix <<< gridDim, blockDim >>> (a_d);
inix <<< gridDim, blockDim >>> (a_d1);
ini <<< gridDim, blockDim >>> (b_d);
ini <<< gridDim, blockDim >>> (b_d1);
ini <<< gridDim, blockDim >>> (c_d);
ini <<< gridDim, blockDim >>> (c_d1);
printf("Start");
for(t=0;t<T;t++)
{
US <<<gridDim, blockDim>>> (a_d, b_d, c_d,
a_d1); VS <<<gridDim, blockDim>>> (a_d, b_d, c_d,
b_d1); rubnix <<<gridDim, blockDim>>> (a_d1);
rubniy <<<gridDim, blockDim>>> (b_d1);
for(i=0;i<30;i++)
poiss<<<gridDim,blockDim>>>(a_d1, b_d1, c_d1, corr_d);

rubnip<<<gridDim,blockDim>>>(c_d1);
korek<<<gridDim,blockDim>>>(a_d1, b_d1,
c_d1); rubnix <<<gridDim, blockDim>>> (a_d1);
rubniy <<<gridDim, blockDim>>> (b_d1);
suma <<<gridDim, blockDim>>> (c_d1, c_d);
ini <<<gridDim, blockDim>>> (c_d1);
rubnip <<<gridDim, blockDim>>> (c_d);

////

US <<<gridDim, blockDim>>> (a_d1, b_d, c_d,
a_d); VS <<<gridDim, blockDim>>> (a_d, b_d1, c_d,
b_d); rubnix <<<gridDim, blockDim>>> (a_d);
rubniy <<<gridDim, blockDim>>> (b_d);

for(i=0;i<30;i++)
poiss<<<gridDim,blockDim>>>(a_d, b_d, c_d1, corr_d);

53

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

rubnip<<<gridDim,blockDim>>>(c_d1);
korek<<<gridDim,blockDim>>>(a_d, b_d,
c_d1); rubnix <<<gridDim, blockDim>>> (a_d);
rubniy <<<gridDim, blockDim>>> (b_d);
suma <<<gridDim, blockDim>>> (c_d1, c_d);
ini <<<gridDim, blockDim>>> (c_d1);
rubnip <<<gridDim, blockDim>>> (c_d);

}
cudaMemcpy(a, a_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(b, b_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost);
cudaMemcpy(c, c_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost);

for(i=0;i<NX;i++)
for(j=0;j<NY;j++) if(i!=NX-1)
fprintf(fp, "\n%d %d %f", i, j, a[i*NY+j]);
for(i=0;i<NX;i++)

for(j=0;j<NY;j++) if(j!=NY-1)
fprintf(fp1, "\n%d %d %f", i, j, b[i*NY+j]);
for(i=0;i<NX;i++)

for(j=0;j<NY;j++)
fprintf(fp2, "\n%d %d %f", i, j, c[i*NY+j]);

t2=clock();

printf(" %f\n",((float)(t2-
t1))/CLOCKS_PER_SEC); cudaFree(a_d);
cudaFree(a_d1);
cudaFree(b_d);
cudaFree(b_d1);
cudaFree(c_d);
cudaFree(c_d1);

//Ispis za paraview

dx1=1.0*NX-1;
dy1=KT*NY-1;
for(i=0;i<NX;i++)

dxx[i]=1.0*i/dx1;
for(i=0;i<NY;i++)

dyy[i]=1.0*i/dy1;
for(i=0;i<NX;i++)

{
xi[i][0]=0.0;
yi[i][0]=0.0;
xi[i][NY-1]=0.0;
yi[i][NY-1]=0.0;

}
for(i=0;i<NY;i++)
{

xi[0][i]=1.0;
yi[0][i]=0.0;
xi[NX-1][i]=0.0;
yi[NX-1][i]=0.0;

}

for(i=1;i<=NX-2;i++)

for(j=1;j<=NY-1;j++)

54

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

{
k=(i-1)*NY+j;
k1=i*NY+j;
xi[i][j]=0.5*(a[k]+a[k+NY]);

}
for(i=1;i<=NX-1;i++)

for(j=1;j<=NY-2;j++)
{

k=i*NY+j-1; k1=i*NY+j;

yi[i][j]=0.5*(b[k]+b[k+1]);

}
i=NX;
j=NY;
PRINT_VECT_VTK(i, j, xi, yi, dxx, dyy);

}

55

Ivan Dević – Fluid simulation with SIMPLE method using graphic processors

REFERENCES

[1] J.D. Andersson, Computational fluid dynamics: The basics with application

(1995)

[2] M. Riherd, S.Roy, Serpentine geometry plasma actuators for flow control,

Journal of applied physics 114, 083303 (2013)

[3] D.M. Schatzman,F. O. Thomas. Turbulent boundary-layer separation control

with single dielectric barrier discharge plasma actuators, AIAA journal 48, no. 8

(2010)

[4] M.Matyka, Solution to two-dimensional Incompressible Navier-Stokes

Equations with SIMPLE, SIMPLER and Vorticity-Stream Function Approaches.

Driven-Lid Cavity Problem: Solution and Visualization, arXiv preprint

physics/0407002 (2004)

[5] NVIDIA, NVIDIA CUDA C Programming Guide, (Version 3.2)

[6] Department of Physics, University of Split, Croatia, cluster

homepage: http://www.gpuhybrid.org/

[7] Paraview – Open source scientific visualization http://www.paraview.org/

[8] https://www.thermalfluidscentral.org/encyclopedia/images/thumb/b/b7/Fig4.22.

png/400px-Fig4.22.png

56

