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Abstract 
  

In this thesis we explore how application of graphics processors can accelerate 

calculations in fluid dynamics. We derive semi-implicit pressure linked equations (SIMPLE) 

and present SIMPLE method (algorithm) which is used with a great success in calculation of 

steady flows. Motivation for using graphics processors (GPUs) comes from their ability to 

significantly shorten execution time of fluid flow calculations. Our implementation of the 

SIMPLE algorithm on GPUs proved to be faster than CPU code by a factor larger then ten. 

We test our GPU code in two common problems in fluid dynamics: driven lid cavity and 

backwards facing step. Implementation of external forces on the fluid will also be 

implemented via plasma actuators, which have been explored as a tool for reducing 

turbulences and noise made by interaction between airplane wing and fluid. Our numerical 

results show that plasma actuators pull the fluid streams closer to the surface of the 

backwards facing step, as the size of the fluid vortex is reduced. 
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1. INTRODUCTION 
 

Fluid dynamics is a branch of physics that studies fluid in motion. While basic 

equations, Navier-Stokes equation, are know for more then 150 years, new 

computational methods of solving them are still being developed today. Throughout 

this thesis we will demonstrate possibilites of semi-implicit pressure linked equation 

method, or simply called SIMPLE method (algorithm). SIMPLE method is model in 

which we can solve velocity fields for steady flows in incompressible fluids. Main idea 

of SIMPLE method is to utilize artificial mathematical approach, where we use 

pressure field as a correction tool in calculation of velocity fields. 

 
Solving Navier-Stokes equation via SIMPLE method needs a lot of computing 

power on central processor units (CPUs), so we will implement SIMPLE method 

using graphical processor units (GPUs), via CUDA, programming extension to 

C/C++. Possibility of parallel calculation over large number of data elements is being 

recognized by more scientific researches every day, since some calculation can be 

accelerated by factor 20. We will apply implemented algorithm on two common 

problems in fluid dynamics : driven-lid cavity and backwards facing step, as we will 

also try to implement calculation of one of newest tecnologies in aerodynamics, 

plasma actuators. 

 
Throughout this thesis, we will introduce mathematical background to SIMPLE 

method, introduce CUDA and show implementation used in this thesis. Mathematical 

background was derived by Andersson[1], so we will summarize and review his work 

and comments. 
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2. DERIVATION OF EQUATIONS IN SIMPLE METHOD 
 

2.1.Finite control volume 
 
 

Let us investigate flow in a cube shaped control volume V, bounded by control 

surface S, through which there is a finite volume flux of fluid. The control volume may 

be fixed in space with the fluid moving through it (Eulerian specification of the flow 

field) or the control volume may be defined as a “tracker” of a particular domain of 

fluid (Lagrangian specification of the flow field). Furthermore, let us apply 

fundamental physical principles to the control volume. Because of this, we do not 

need to observe the fluid as a whole, but with the control volume model we only 

observe the fluid in the control volume itself and it’s interactions with neighboring 

control volumes. [1] The fluid equations that we obtain by applying the fundamental 

physical principles to the control volume are in integral form, which can be rewritten 

in the form of partial differential equations. The equations obtained from the Eulerian 

specification of the flow field are called the conservation form of the governing 

equations, while equations obtained from the Lagrangian specification of the flow 

field, are called the nonconservation form of the governing equations. 

 
Let us imagine an infinitesimally small fluid element in the flow with a 

differential volume dV. We must keep in mind that although this volume is 

infinitesimally small, it is large enough to contain a huge number of molecules so that 

it can be viewed as a continuous medium. Inside this theoretical framework, we are 

in position to define interactions between control volumes, while neglecting 

intermolecular interactions, which happened on the scale much smaller than our 

computational resolution.  
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As already stated, instead observing the whole flow field at once, the fundamental 

physical principles are applied to just the infinitesimally small fluid element itself. [1] 

 
2.2 The momentum equation 

 
We will apply one of fundamental physical principles to a model of the flow-

Newton's second law. The resulting equation is called the momentum equation. We 

will utilize the Lagrangian specification of the flow field, because this model is 

convinient for derivation of momentum equation. We must keep in mind that the 

momentum equation can also be derived from other models of control volume. [1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1 Sketch of surface force applied to finite control volume. Taken from [1] 
 
 

Newton's second law, when applied to the moving fluid element in Fig. 2.1, 

says that the net force on the fluid element equals its mass times the acceleration of 
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the element. Since this is a vector relation we can split it into three scalar relations 

along the x, y, and z axes. Let us consider only the x component of Newton's second 

law, where we will denote x component of force as Fx and x-component of 

acceleration as ax. 

 
First, let's define two types of force, classified by their source: 

 
 

• Body forces; force applied to the content of the control volume. These forces 

"act at a distance"; examples are gravitational, electric, and magnetic forces. 

[1] 
 

• Surface forces; forces exhibited on the control surface of the fluid element. 

There are two surface forces we consider; the pressure distribution acting on 

the surface, imposed by the outside fluid surrounding the fluid element and the 

shear and normal stress distributions acting on the surface. 

 
Let us denote body force per mass unit acting on fluid as f, with its components fx, 

fy and fz. The surface forces in the x-direction exerted on the fluid element are 

sketched in Fig. 2.1. The convention will be used in fashion that τij denotes a stress 

in the j direction exerted on a plane perpendicular to the i axis. 

 
We will denote components of velocity as u (x component), v (y component) and 

w (z component). 

 
Taking in consideration all mentioned above, we can finally write an equation for 

total force in x direction 

 

                          𝐹! = − !"
!"
+ !!!!

!"
+ !!!"

!"
+ !!!"

!"
𝑑𝑥𝑑𝑦𝑑𝑧 + 𝜌𝑓!𝑑𝑥𝑑𝑦𝑑𝑧            (2.1)
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   where ρ denotes  density  of  fluid.  Density  of  fluid  multiplied  by  x,  y  and  z 

differentials equals mass of fluid element, so combining Eq. (2.1) with most common  

writing of second Newton's law, we obtain 

 
 

                    𝜌 !"
!"
= − − !"

!"
+ !!!!

!"
+ !!!"

!"
+ !!!"

!"
+ 𝜌𝑓!                            (2.2) 

 
 
which is the x component of the momentum equation. In similar fashion we obtain y 

component and z component of the momentum equation. 

                 𝜌 !"
!"
= − !"

!"
+ !!!"

!"
+ !!!!

!"
+ !!!"

!"
+ 𝜌𝑓!                          (2.3) 

 
                  𝜌 !"

!"
= − !"

!"
+ !!!"

!"
+ !!!"

!"
+ !!!!

!"
+ 𝜌𝑓!                          (2.4) 

 
 

Note that inside these partial differential equations, we have defined change of 

the momentum of the control volume V, solely by interactions with other control 

volumes. Since this fluid element is moving with the flow, Eqs. (2.2) to (2.4) are in 

nonconservation form. They are scalar equations and are called the Navier-Stokes 

equations after M. Navier and G. Stokes. 

 
Isaac Newton stated that shear stress in a fluid is proportional to velocity 

gradients.[1] Such fluids are called Newtonian fluids. Throughout this thesis, the fluid 

is assumed to be Newtonian. For such fluids, we can write our sheer stresses 

 

                                     𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

                                               (2.5) 

                                     𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

                                              (2.6) 
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                                     𝜏!! = 𝜆 ∇𝑉 + 2𝜇 !"
!"

                                              (2.7) 

                                     𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
)                                        (2.8) 

                                     𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
)                                        (2.9) 

                                     𝜏!" = 𝜏!" = 2𝜇(!"
!"
+ !"

!"
)                                      (2.10) 

 

where µ is  the  molecular  viscosity  coefficient  and λ is  the  second  viscosity 

 
coefficient. V denotes total field of velocity. 
 
 
2.3 Incompressible Navier-Stokes equation 

 
The incompressible Navier-Stokes equations can be obtained from the 

compressible form, by setting density equal to a constant. Considering a continuity 

equation for fluids 

                                   !"
!"
+ 𝜌∇𝑽 = 0                                      (2.11) 

and considering that density is constant, we obtain continuity equation for 

incompressible fluids 

 

                                                ∇𝑽 = 0                                             (2.12) 
 
 
 

Using Eqs. (2.2)-(2.10) with Eq. (2.12), we obtain incompressible momentum 

equation for each componoent: x, y and z. 
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   𝜌 !"

!"
= − !"

!"
+ 2𝜇 !

!!
!!!

+ 𝜇 !
!"

!"
!"
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓!  (2.13) 

 

   𝜌 !"
!"
= − !"

!"
+ 2𝜇 !!!

!!!
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓!  (2.14) 

 
 

  𝜌 !"
!"
= − !"

!"
+ 2𝜇 !

!!
!!!

+ 𝜇 !
!"

!"
!!
+ !"

!"
+ 𝜇 !

!"
!"
!"
+ !"

!"
+ 𝜌𝑓!  (2.15) 

 
Using Eq. (2.12) we can further simplify Eqs. (2.13)-(2.15). The idea is to 

rewrite differential of one component as function of other two components, and after 

some rearranging, rewrite second term on right side of these equations, we obtain 

incompressible Navier stokes equations 

 

                                                ∇𝑽 = 0                                             (2.16) 
 

                                          𝜌 !"
!"
= − !"

!"
+ 𝜇∇!𝑢 + 𝜌𝑓!                                   (2.17) 

 

                                          𝜌 !"
!"
= − !"

!"
+ 𝜇∇!𝑣 + 𝜌𝑓!                                   (2.18) 

 
                                          𝜌 !"

!"
= − !"

!"
+ 𝜇∇!𝑤 + 𝜌𝑓!                                  (2.19) 

 
Note that in Eqs. (2.16)-(2.17) we have four variables in four equations, which 

implies that with these four equations, we close our problem, from mathematical 

standpoint of view. 

 
Although, incompressible Navier-Stokes equations are derived from the 

compressible Navier-Stokes equations, we cannot use the same numerical technique 

for solving both sets of equations. From now on, we deal with the implementation of 

the pressure correction algorithm, which will be explained in great detail. 
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2.4 Staggered grid 
 

If we write Eq. (2.16) using central spatial differentials, we obtain 
 
 
 

                               
!!!!,!!!!!!,!

!!!
+ !!,!!!!!!,!!!

!!!
= 0                           (2.20) 

 
There is a big problem solving Eq.(2.20), because it allows checkerboard 

distribution of velocities. Same problem occurs in rewriting pressure gradient in the 

same fashion as we did with velocities in Eq.(2.20). In Figure 2.2 we see one of the 

checkerboard distributions that would satisfy Eq.(2.20), which obviously cannot be 

steady solution for any of scalar fields.[1] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 Checker board distribution which would be achievable with non-staggered grid (Source [8])
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To avoid this problem, we will use staggered grid, shown in Figure 2.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            Figure 2.3 Staggered grid used in SIMPLE method. Taken from [4] 
 
 

In this fashion we will avoid checkerboard distribution, due to using values of 

other fields, which are not in same grid points (namely velocity and pressure field). In 

compressible fluids, this problem is avoided by calculating densities, while in 

incompressible fluids density is set to a constant. Eq.(2.20) rewritten for grid shown in 

Figure 2.3 is 

 

                              
!!!!/!,!!!!!!/!,!

!!
+ !!,!!!/!!!!,!!!/!

!!
= 0                  (2.21) 

 
2.5 Pressure correction method 

 
Pressure correction method is iterative process (without time interpetation), 

that follows next few steps to obtain results. 

 

• Guess the initial pressure field, which we will denote as p*. 
 

• With use of momentum equations, obtain values of u*, v* and w*. 
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· Since values of u*, v* and w* were calculated from guessed pressure field, we 

must obtain new pressure field, which we will denote as p'. This field is 

pressure correction field. Once we add this field to initially guessed field, we 

solve the continuity equation 

 

                                              𝑝 = 𝑝! + 𝑝∗                                        (2.22) 
 
 

• In the same fashion as for pressure, we obtain the velocity correction field and 

sum them as (2.22) 
 

                                              𝑢 = 𝑢! + 𝑢!                                        (2.23) 
 
 

                                              𝑣 = 𝑣! + 𝑣∗                                        (2.24) 
 
 

                                             𝑤 = 𝑤! + 𝑤∗                                            (2.25) 
 

• In next iteration, we use values of p, u, v and w as p*, u*, v* and w*. 
 
 

From now on, we will derive expressions for two-dimensional problem. We will 

derive equations for x-component, since y component equations are obtained in the 

same fashion and are completely the same when we change spatial differentials. All 

derivations untill now were easier using noncoservation equations, but from now on 

we will use conservation form of the momentum equations, because they are easier 

to implement in numerics. They are obtained from nonconservation equations once 

we rewrite time differential (left side of the momentum equation) as substantial 

derivative. Those equations in incompressible form (without external force) are 

                   !"#
!"

+ !"!!

!"
+ !"#$

!"
= − !"

!"
+ 𝜇 !!!

!!!
+ !!!

!!!
                     (2.26) 

 

                   !"#
!"
+ !"!!

!"
+ !"#$

!"
= − !"

!"
+ 𝜇 !!!

!!!
+ !!!

!!!
                      (2.27) 
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Now, let us consider how can we solve Eq. (2.26), when we apply forward 

differential for time, and central differential for spatial derivatives. If we recall Figure 

2.3 and focus at grid point (i+1/2,j), we can see that for central differential in third 

term on left side of Eq. (2.26), we must somehow obtain values of v in middle grid 

boxes. We will use simple linear interpolation to do that. The same fashion applies to 

the neccesity of having values of u when solving Eq. (2.27). We can now rewrite Eq. 

(2.26) 

 

         (𝜌𝑢)!!!/!.!!!! = (𝜌𝑢)!!!/!.!! + 𝐴Δ𝑡 + !!
!!

𝑝!!!,!! − 𝑝!,!!              (2.28) 
 
 
 
where A is given by expression 
 

  𝐴 = −
(!!!)!!!/!,!

! !(!!!)!!!/!,!
!

!!!
+

(!"!)!!!/!,!!!
! !(!"!)!!!/!,!!!

!

!!!
 

                                    +𝜇
𝑢!!!/!,!! − 2𝑢!!!/!,!! + 𝑢!!!/!,!!

Δ𝑥 ! +
𝑢!!!/!,!!!! − 2𝑢!!!/!,!! + 𝑢!!!/!,!!!!

Δ𝑦 !  
 
𝑣 represents the interpolated value of v inside box. 
 
 

As mentioned, at the end of each iteration, we set results of velocity and 

pressure field, as guessed result in next time iteration. That means we can rewrite 

Eq.(2.28) 

         (𝜌𝑢∗)!!!/!.!!!! = (𝜌𝑢∗)!!!/!.!! + 𝐴∗Δ𝑡 + !!
!!

𝑝∗!!!,!
! − 𝑝∗!,!

!    (2.29) 
 
 
 
 
If we subtract Eq. (2.29) from Eq. (2.28), we obtain 
 
 

         (𝜌𝑢!)!!!/!.!!!! = (𝜌𝑢!)!!!/!.!! + 𝐴!Δ𝑡 + !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
     (2.30) 
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using Eqs.(2.22)-(2.24). 
 
 

We will obtain a formula for the pressure correction p' by demanding that all 

velocity fields must satisfy the incompressible continuity equation. The pressure 

correction method is an iterative approach, but results during the iterative process do 

not have physical meaning until the last step, as the iteration is not performed along 

time. Values for p' provide us with converged solution once d is reasonably small and 

it gives us corrected pressure, which will ultimately give us velocity fields which 

satisfy the incompressible continuity equation. To summarize, values of p' are a 

numerical artifact which helps us obtain the steady solution for the flow field. 

 

With that in mind, we set A’ and (𝜌𝑢)! zero and rewrite Eq. (2.30) as 

 

                             (𝜌𝑢!)!!!/!.!!!! = !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
                           (2.31) 

 
 
If we combine Eq. (2.23) and Eq.(2.31), we obtain 
 

                  (𝜌𝑢)!!!/!.!!!! = (𝜌𝑢∗)!!!/!.!!!! + !!
!!

𝑝!!!!,!
! − 𝑝!!,!

!
             (2.32) 

 
 
 
Equation for y component can be obtained in same fashion. 
 

                  (𝜌𝑣)!.!!!/!!!! = (𝜌𝑣∗)!.!!!/!!!! + !!
!!

𝑝!!,!!!
! − 𝑝!!,!

!
             (2.33) 

 
 
 
 

Now we can finally obtain pressure correction formula, by combining 

Eqs.(2.32)-(2.33) into Eq.(2.21), we get 

             𝑎𝑝!,!! + 𝑏𝑝!!!,!! + 𝑏𝑝!!!,!! + 𝑐𝑝!,!!!! + 𝑐𝑝!,!!!! + 𝑑 = 0      (2.34)
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where  
 
 

𝑎 = 2 !!
!! ! +

!!
!! !   

𝑏 = − !!
!! !   

𝑐 = − !!
!! !   

𝑑 = !
!!

(𝜌𝑢∗)!!!/!,! − (𝜌𝑢∗)!!!/!,! + !
!!

(𝜌𝑣∗)!,!!!/! − (𝜌𝑣∗)!,!!!/!   

 

Eq. (2.34) is called pressure correction formula. During the process of 

calculation velocity fields u and v do not satisfy continuity equation. Once velocities 

sastisfy continuity equation d will be equal zero, but it is computationally expensive to 

reach that degree of convergence, so we aim to get as close to zero value as 

possible in reasonable computational time. We can also see that Eq. (2.34) is central 

differential representation of Poisson equation, which explains the elliptic behavior of 

the pressure correction formula. 
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3. GRAPHICS PROCESSOR UNIT AND CUDA 
 
 

3.1 Introduction 

 
As science advances, so are calculation used in science getting more 

complicated and need for higher computing performance is higher then ever. To 

adress this problem, graphic processor units (GPU) have been used to perform 

calculation. With multiple cores and very high memory bandwidth, todays GPUs offer 

strong resources for both graphics and non-graphics prosessing. 

 
As GPUs main objective is graphics rendering, it was designed for highly 

parallel and intensive computation. Distribution of transistors in CPUs and GPUs is 

shown in Figure 3.1, where ALU stands for arithmetig-logic unit, which are transistors 

used in calculations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.1 Transistor distribution in CPU and GPU. Taken from [5] 

 
 

GPUs are well-suited to adress problems that can be expressed as data-

parallel computations as same program can be executed over many data elements in 

parallel. Strong advantage of CPUs over GPUs is memory transfer and flow control in 

programs, so the best way to use both of technologies is via heterogeneous

 
 

 
14 



Ivan Dević – Fluid simulation with SIMPLE method using graphic processors 
 
 
programming or hybrid programming. Idea is to let GPUs handle arithmetic and logic 

tasks, while minimizing flow control and memory transfer which is done by CPUs. 

 
3.2 CUDA 
 

CUDA [5] stands for Compute Unified Device Architecture and is used as 

software architecture for issuing and managing computations on the GPUs as data-

parallel computing device. It was designed as an extension to C and C++ 

programming language. CUDA also provides ability to read and write data at any 

location in DRAM (dynamic random-access memory), just like on a CPU. 

 
When programmed through CUDA, GPUs are used in identically as CPUs, but 

due to different transistor distribution, it can handle many operations in the same 

time. In further text, we will refer to CPUs as a host, while we will call GPUs device. 

What we want to achieve is to let host deal with the majority of code, while device 

while be used only for calculating arithmetical steps of the code. Both host and 

device maintain their own DRAM, referred to as host memory and device memory. 

Execution of kernel is organized as a grid of thread blocks, as shown in Figure 3.2. 
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Figure 3.2 Visualization of grid hierarchy in kernel. Taken from [5] 
 
 

A thread block is a collection of threads that can cooperate together by sharing 

data through some fast shared memory and synchronizing their exectuion to 

coordinate memory accesses. Each thread is identified by its thread ID, which is the 

thread number inside it’s own block. Blocks can be organized as one-, two- or
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three-dimensional array of threads, where threads are then identified as one-, two- or 

three-component index. 

 
There is a limited maximum number of threads that a block can contain, but 

then kernel can be used to execute itself over grid of blocks, so total number of 

threads in execution can be larger than maximum size of a block. As thread, each 

block is identified by its block ID, which is the block number within the grid. Grids can 

be organized as blocks, hence grid can have a two-dimensional array of blocks, while 

only new GPUs can have three-dimensional array of blocks. 

 
3.3 Memory model and memory types 
 

A thread that execute on the device has only access to the device's DRAM 

and on-chip memory. GPUs have few memory types and memory model which 

defines communication between memory of different types. Memory types are 

classified as [5]: 

 
• Global memory – is the largest memory space on the device and is used for 

storage of data, once they are downloaded from host. Speed of accesing 

global memory is slower then is with shared memory (explained below), so it's 

optimal to use global memory only for data transaction between host and 

device. It's lifetime is application execution time 

 
• Local memory – is memory that resides on device, as global memory. Local 

memory is a part of global memory that is created for a single thread, so it has 

lifetime of thread execution. 
 

• Shared memory – is on-chip memory and because of that is much faster than 

local or global memory. Shared memory is created for every block, hence 
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block can only access data from it's respective shared memory. It has a 

lifetime of kernel execution. 
 

• Constant memory – is also on-chip memory and is equally fast as shared 

memory, but device can only read this data, while host can change it. Unlike 

shared memory, constant memory can be accessed by whole grid and has 

lifetime of application execution time. 
 

• Registers – are memory specific for each processor, so that each processor 

has right to write and read fomt its own registers. Register is accessable by 

particular thread and it's lifetime is kernel execution time. 

 
With all this in mind, we can already get an idea how to approach memory on 

GPUs. Idea is to use global memory for transaction of data between host and device, 

but execute calculation on shared memory. Figure 3.3 shows summary of memory 

types and their communication. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18 



Ivan Dević – Fluid simulation with SIMPLE method using graphic processors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Memory model of GPU. Taken from [5] 
 
 
3.4 Execution configuration 

 
Any invocation of a kernel must be specified with the execution configuration, 

which is done with dim3 variables. Dim3 variables is three-component vector which 

components can be accessed as variable_name.x (y or z). Execution configuration is 
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specified in form <<<Dg, Db, Ns>>> between function name and argument list, 

where (definitions are copied from [5]): 

 
• Dg is of type dim3 and specifies the dimension and size of the grid, such that 

 
Dg.x * Dg.y eqauls the number of blocks being lunched 

 
• Db is of type dim3 and specifies the dimension and size of each block such 

that Db.x * Db.y * Db.z equals the number of threads per block 
 

• Ns specifies the number of bytes in shared memory that is danymically 

allocated per block for this call in adition to the statically allocated memory. It 

is an optional argument which defaults to 0. 

 
Kernels are declared with argument __global__ void in front of function name 

and argument list, so function declared as: 

 
• __global__ void Function (type of argument* argument) 

 
 
must be invoked as 

 
 

• Function <<<Dg, Db, Ns >>> (argument) 
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4. SIMPLE ALGORITHM 
 
4.1 Summary of equations 

 
In this chapter, we will present numerical procedure for solving equations 

derived in second chapter of this thesis. We will also introduce Reynolds number 

(Re), with which we will parameterize density ρ and molecular viscosity coefficient µ. 

Reynolds number will be also used for scaling space and time parameters. From now 

on we will denote partial derivatives as subsribts. Let us summarize equations we are 

solving in two-dimensional form: 

       𝑢! = −𝑢!! − 𝑢𝑣 ! − 𝑝! +
!
!"

𝑢!! + 𝑣!! + 𝑓!         (4.1) 

                𝑢! = −𝑣!! − 𝑢𝑣 ! − 𝑝! +
!
!"

𝑢!! + 𝑣!! + 𝑓!             (4.2) 

                       𝑢! + 𝑣! = 0                                                   (4.3) 

                        ∇!𝑝 = ∇𝑉                                                    (4.4) 

Eq. (4.4) is the same equation as Eq. (2.34). It may be confusing considering 

the right side should be zero, once aproximation of incompressibility is taken into 

consideration, but velocities which will be input inside Eq. (4.4) don't satisfy continuity 

equation, so we are obtaining their corrections while solving Eq. (4.4). 

 
If there are no forces applied to fluid, values of fx and fy are zero. 

 
 

In Table 1. we will summarize all the differentials that were used to solve Eqs. 

(4.1)-(4.4). If we recall from Chapter 2., we used forward differential for time 

derivatives and central differentials for spatial derivatives. 
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Table	1	Summary	of	partial	derivative	and	it's	respective	differentials	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Equations which will be iterated and solved using GPUs are: 

         𝑢!!!.!.!!!! = 𝑢!!!.!.!! + Δ𝑡 𝐴 − (Δ𝑥)!! 𝑝!!!,!! − 𝑝!,!!                  (4.5) 
 
                                    𝐴 = 𝑎! + 𝑅𝑒!!(𝑎! + 𝑎!)                                         (4.6) 
 
 

                 𝑎! = −
(!!)!!!.!,!

! !(!!)!!!.!,!
!

!!!
−

(!!)!!!.!,!!!
! !(!!)!!!.!,!!!

!

!!!
         (4.7) 

 
 

                                  𝑎! = −
!!!!.!,!
! !!!!!!.!,!

! !!!!!.!,!
!

!! !                                                               (4.8) 

 
 

                                  𝑎! = −
!!!!.!,!!!
! !!!!!!.!,!

! !!!!!.!,!!!
!

!! !                                                     (4.9) 

 
 

         𝑣!.!!!.!!!! = 𝑣!.!!!.!! + Δ𝑡 𝐵 − (Δ𝑦)!! 𝑝!,!!!! − 𝑝!,!!                (4.10) 
 
 
                                    𝐵 = 𝑏! + 𝑅𝑒!!(𝑏! + 𝑏!)                                         (4.11) 
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               𝑏! = −
(!!)!,!!!.!

! !(!!)!,!!!.!
!

!!!
−

(!!)!!!,!!!.!
! !(!!)!!!,!!!.!

!

!!!
          (4.12) 

 

                                 𝑏! = −
!!,!!!.!
! !!!!,!!!.!

! !!!,!!!.!
!

!! !                                                                (4.13) 

 

                                𝑏! = −
!!!!,!!!.!
! !!!!,!!!.!

! !!!!!,!!!.!
!

!! !                                                         (4.14) 

 
          𝑝!,!! = −𝑎!! 𝑏 𝑝!!!,!! + 𝑝!!!,!! + 𝑐 𝑝!,!!!! + 𝑝!,!!!! + 𝑑      (4.15) 
 

                                      𝑎 = 2Δ𝑡 !
!!!

+ !
!!!

                                   (4.16) 

 

                                               𝑏 = − !!
!!!

                                            (4.17) 
 

                                               𝑐 = − !!
!!!

                                            (4.18) 

 

           𝑑 = !
!!!

𝑢!!!.!,! − 𝑢!!!.!,! + !
!!!

𝑣!,!!!.! − 𝑣!,!!!.!        (4.19) 

 

                                      𝑢! = − !!
!!

𝑝!!!,!! + 𝑝!,!!                             (4.20) 
 

                                      𝑣! = − !!
!!

𝑝!,!!!! + 𝑝!,!!                             (4.21) 

 
 
 
 
Alghorithm which will be used is: 
 
 
1. Solve Eqs. (4.5)-(4.14) 
 
2. Iterate Eqs. (4.15)-(4.19). Number of iterations depends on precision that we want 

to achieve. Lower number of iterations of this step may result in need for higher 
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number of iterations of whole algorithm. However, final results, if converged, must 

be the same. In this thesis, we iterated this step 30 times. 
 
3. Using Eqs (4.20)-(4.21) find the correction of velocities. 
 
4. Add valus of p' to original p 
 
5. Repeat steps 1-4 
 
 
4.2 Data transfer between global and shared memory on GPU 

 
While discussing memory types CUDA can access, we mentioned that shared 

memory is fastest, together with constant memory which cannot be changed from 

device. Before solving any of Eqs. (4.5)-(4.22), we will copy all of our data to shared 

memory, where each member of data will represent one thread. As shared memory is 

unique to each block inside grid, we must be carefull of possible memory malfunction. 

Let's imagine we are working with two-dimensional square grid, with dimension 4. 

 
BlockID BlockID BlockID BlockID 

(0,3) (1,3) (2,3) (3,3) 
    

BlockID BlockID BlockID BlockID 

(0,2) (1,2) (2,2) (3,2) 
    

BlockID BlockID BlockID BlockID 

(0,1) (1,1) (2,1) (3,1) 
    

BlockID BlockID BlockID BlockID 

(0,0) (1,0) (2,0) (3,0) 
    

Figure 4.1 Block identification system in two-dimensional grid 
 
 

Lets focus on block with BlockID (1,1), and let's assume each block contains 

2*2 threads. Considering Eqs.(4.5)-(4.22) we can see that each data member needs 

all adjacent data (first neighbors) to be calculated. To do so, we need to declare two- 
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dimensional array in shared memory for each block, but with dimension 4*4, because 

we need to copy adjacent rows and columns so calculation can be done. In Figure 

4.2, grey squares will represent data that shared memory of BlockID(1,1) must 

contain (data/threads of non-adjacent blocks won't be shown), for calculation to be 

correct. 

 
BlockID  BlockID  BlockID BlockID 

 

(3,0)  (3,1)  (2,3) (3,3) 
 

          
 

BlockID     BlockID BlockID 
 

(2,0) 
     

(2,2) (3,2) 
 

     
 

          
 

    BlockID    BlockID 
 

    
(1,1) 

   
(3,1) 

 

       
 

          
 

BlockID     BlockID BlockID 
 

(0,0) 
     

(2,0) (3,0) 
 

     
 

          
 

Figure 4.2 Example of necessary memory transfer from global memory to shared memory in SIMPLE 
 

algorithm 
 
 

In this thesis, we are using one-dimensional arrays on host that are 

downloaded to device as one-dimensional arrays. With memory transfer to shared 

memory, we transform them in two-dimensional arrays for less complicated 

implementation of Eqs. (4.5)-(4.21). Reason for governing data as one-dimensional 

arrays on host and device is because of faster download and upload of data from 

device. 

 
4.3 Visualization 
 

For visualization of our data, we will use Paraview. Paraview is an open-

source, multi-platform data analysis and visualization application. We will visualize 
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magnitudes of velocities and their respective components. One of the techinques of 

visualization which we will use is streamline plot technique and it is incorporated 

inside Paraview. Streamline plot technique is used for incompressible fluids, where 

we calculate stream function and with lines (called streams) we connect grid 

positions of same stream function value. It is defined as : 

                                      Ψ = 𝑢𝑑𝑦 + 𝑣𝑑𝑥!
!                                    (4.22) 

 
where shift from a to b is infinitesimal. Streams we get on the plot are good indication 

of fluid trajectory, vortexes, turbulencies etc. For visualiazing our data in Paraview, 

we must calculate, with linear interpolation, values of velocities in grid points (where 

we calculated pressure field) and then write them in .vtk file (this is shown in 

Appendix A in function PRINT_VECT_VTK). 

 
 
 

 

4.4 Fluid mechanics problems 

 
In this thesis, we are going to apply SIMPLE algorithm to two common fluid 

mechanics problems. 

 
Driven-lid cavity is one of the most known problems in fluid mechanics and is 

widely used as test for new solutions in computational fluid dynamics. Driven lid 

cavity is two-dimensional closed box with one of lids moving (in this thesis it will be 

bottom lid), causing fluid inside the box to move. We will also use driven-lid cavity as 

test for our calculation and also for test of speed-up we achieved using CUDA and 

GPUs over CPUs. 

 
Boundary conditions for driven lid cavity with dimensions [A*B]are: 
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• No-slip condition, hence velocities perpendicular to the normal vector of 

boundaries must be zero, with exeption on moving lid 
 

u(x,0)=1 

u(x,B)=0 

v(0,y)=0 

v(A,y)=0 
 

• Directional derivatives of pressure on normal vectors of boundary wall 

must be zero: 

p(x,0)=p(x,1) 
 

p(x,B)=p(x,B-1) 

p(0,y)=p(1,y) 
 

p(B,y)=p(B-1,y) 
 

• There is no momentum loss in fluid while reflecting from boundary. 

Considering staggered grid that is used, we can see that for reflection of 

fluid there is no true boundary condition, because last grid points of 

velocities perpendicular to the boundaries (only velocities that could reflect 

due to no-slip condition) are not on the wall. We obtain this boundary 

condition with linear interpolation, by setting coefficent of proportion 

between last grid point and his adjacent grid point to -2/3 

u(0.5,y)=-2*u(1.5,y)/3 
 

u(A-0.5,y)=-2*u(A-1.5,y)/3 

v(x,0.5)=-2*v(x,1.5)/3 
 

v(x,B-0.5)=-2*v(x,B-1.5)/3 
 
 

Backwards facing step is another common problem in computational fluid 

dynamics. It consists of inflow on left side, outflows on top and right side and
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boundary wall on the bottom side with backwards facing step. We will also implement 

calculation of body force in backwards facing step, which will be described later. 

 
 
 

 
Figure 4.3 Sketch of backwards facing step, where full lines represent solid boundary and dotted 

line represents open boundary (no reflection of fluid on this boundary) 
 

Boundary conditions for backwards facing step are same on the boundary 
 
wall, while inflow and outflows have own set of boundary conditions: 

 
 

• We will set u=1, v=0 and p=0 on inflow boundary 
 

• Outflow boundary conditions is zero value of directive derivatives of u, v 

perpendicular to boundary and value of p is zero. 

 
Body force that we will apply in backwards facing step is force excelled by 

plasma actuator. Plasma actuator is technology used on airplanes to reduce 

turbulencies and noise made by plane [2]. Force components fx and fy are defined by 

next equations 

           𝑓! = 𝐴 ∗ !!

!!!!!!!
𝑒𝑥𝑝 − !!!!!!!!!

!!!!!!!

!
− 𝛽! 𝑦 − 𝑦! !        (4.23) 

 

          𝑓! = 𝐴 ∗ !!

!!!!!!!
𝑒𝑥𝑝 − !!!!

!!!!!!!

!
− 𝛽! 𝑦 − 𝑦! !            (4.24) 

 
 
 

where Fx=2.0, Fy=2.6, yb=0.00333, 𝛽!=72000 and 𝛽!=900000 [2]. We will define 

strength of this repulsive force via parametar A. 
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Force described by Eqs. (4.24)-(4.25) is repulsive low range force and its 

magnitude is shown in Diagram 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram 1 Magnitude of plasma actuator body force, when plasma actuator is in the centre of 
coordinate sytem 
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5. RESULTS 
 
 

5.1 Driven-lid cavity 
 

Solutions for driven –lid cavity (velocity fields) are shown in Figure 5.1, 5.2 

and 5.3, while Figure 5.4 represents results for streamline plot technique. Calculation 

was done in resolution 100*100 with Reynolds number set to 400. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.1 Solution of total velocity magnitudes in Driven-lid cavity 
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Figure 5.2 Solution of x-component velocitiy magnitudes in Driven-lid cavity 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3 Solution of y-component velocitiy magnitudes in Driven-lid cavity 
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Figure 5.4 Visualization via streamline plot technique for Driven-lid cavity 
 
 
 

This results confirm SIMPLE algorithm as valid computational method for 

solving incompressible Navier-Stokes equation. Also stremline plot technique shows 

two vortexes that are characteristic for square driven-lid cavity problem. One issue 

with using Paraview as streamline plot technique is that it calculates stream function 

in direction of one line, so full display with streams is hardly achievable. Now that our 

results are postivie, lets see the acceleration that CUDA has provided us and what 

size of block is most optimal for this computation. We will test accelartion on 5000 
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iterations, since number of iterations doesn't affect acceleration. We will define 

accelartion is result of dividing speeds achieved by CPU and GPU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram 2 Time of execution of SIMPLE algorithm depending on size of a square grid 
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Diagram 3 Acceleration of GPU computation over CPU computation 
 
 
 

CPU that was used is Intel(R) Core(TM) i5-2430M @ 2.40 GHz. 
 
 

GPU that was used is GT200 @ 1.3 GHz, (nVidia Tesla S1070 card) 
 
 
 
 
 

We can see from Diagram 3 that at lowest resolution GPU is already 

outperforming CPU by minimum factor of 7. There is no explanation for lower 

accelaration of program execution at resolution 160*160, as CPU somehow 

managed to do it faster then expected (Diagram 2). 
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5.2 Backwards facing step 
 

 
Backwards facing step was calculated over grid of dimensions 1000*200, with 

value of Reynolds number 400. Results are shown in Figures (5.5)-(5.8). It's 

impossible to change font size of axis numbers in Paraview at the moment, so 

dimension on y-axis will be hard to read (dimension is 0.2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.5 Solution of total velocity magnitudes in backwards facing step 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.6 Solution of x-component velocity magnitudes in backwards facing step 
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Figure 5.7 Solution of y-component velocity magnitudes in backwards facing step 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.8 Visualization via streamline plot technique for backwards facing step 
 
 
 

For simulation of plasma actuator we will use two values of parameter A, 
 
A=1000 and A=2000. Since repulsive force of plasma actuator decays rapidly, we will 

only add force in the area around actuator as shown in Diagram 1. 

 
Results for backwards facing step with plasma actuator located at x=0.08, 

y=0.04 (using color distribution of Figures (5.5)-(5.8)) are shown in next figures. 
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Figure 5.9 Solution of total velocity magnitudes in backwards facing step with plasma actuator (A=1000) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.10 Solution of x-component velocity magnitudes in backwards facing step with plasma 

actuator (A=1000) 
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Figure 5.11 Solution of y-component velocity magnitudes in backwards facing step with plasma 

actuator (A=1000) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12 Visualization via streamline plot technique for backwards facing step with plasma 
actuator (A=1000) 
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Figure 5.13 Solution of total velocity magnitudes in backwards facing step with plasma actuator (A=2000) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14 Solution of x-component velocity magnitudes in backwards facing step with plasma 

actuator (A=2000) 
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Figure 5.15 Solution of y-component velocity magnitudes in backwards facing step with plasma 

actuator (A=2000) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.16 Visualization via streamline plot technique for backwards facing step with plasma 
actuator (A=2000) 

 
 
 

Results shown in Figures (5.9)-(5.16) show some expected results for plasma 

actuators. When calculating with A=1000, we see we have decreased size of vortex 

that was created behind the step and with A=2000 we decreased it even more. We 

have also achieved that streams get closer to the backwards facing step, which is 

also expected [2], but what must be noted is that we have achieved closer streams 

with A=1000, then with A=2000. These results still need experimental conformation, 
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since plasma actuators on backwards facing step aren't commonly used and 

scientific publications about this subject are almost nonexistent. 
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6. DISCUSSION AND CONCLUSION 
 

As stated in introduction, SIMPLE method can only solve steady flows, hence, 

no time-dependant forces or boundary conditions can be applied in this 

computation, which narrows greatly use of this kind of calculation. Restriction of 

incompressibility must also be taken seriously, as it is very unstable aproximation 

in some calculations, especially at high values of Reynolds number (we used 

value of 400 for all of our calculation). 

 
One look at Diagram 2., shows that future of computational fluid dynamics is 

usage of CUDA and GPUs. Even at lowest resolution, acceleration factor is 7 and 

today's resolution used in computation fluid dynamics are way higher, hence, 

GPUs could be even more usefull, as they were in this calculation, which would 

lead to higher precision of calculation in more then even 20 times less time of 

execution. 

 
Results presented for driven lid cavity and backwards facing step show that 

implementation of SIMPLE algorithm was correct, since there is a lot of results 

available via scientific publications. Result for plasma actuators still need 

experimental confirmation and simulation of plasma actuators are nowadays 

greatly discussed in science community, since it is fairly new research area. As 

SIMPLE method cannnot solve unsteady flows, it is very unlikeable that this 

approach will be used in future, because most applications of plasma actuators 

demand time dependent force and not constant force as used in this thesis. 

 
One major flaw of code used in this thesis is that it can only solve problems 

with flat boundaries and it would require major upgrade to calculate fluid flow 

around non-flat boundaries. What must be noted also is that acceleration we 
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obtained using CUDA could be higher, since some parts of code could probably 

be more memory optimized, but even this version of code is capable of executing 

calculation more then ten times faster then CPU execution of code. 
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APPENDIX A – Code  
#include <stdio.h> #include 
<stdlib.h> #include 
<string.h> #include 
<cuda.h> #include 
<cuda_runtime.h> #include 
<math.h> #include <time.h> 
 
#define BD 20 
#define BX 50 
#define BY 10 
#define NX 1000 
#define NY 200 
#define KT 5 
#define AI -2./3. 
#define DT 0.00005 
#define RX 100 
#define RY 40 
#define FX 0.7926 
#define FY 0.6097 
#define Bx 72000 
#define By 900000 
#define yb 0.00333 
#define IY 40 
#define IX 80 
#define AMP 2000 
 
 
#define Re 400 
#define GR 0.0001 
#define T 60000 
__global__ void inix (float *a)  
{  

__shared__ float s[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 
if(iu<RX && ju>RY) 
s[i][j]=1.;  
else 
s[i][j]=0.; 
a[k]=s[i][j]; 

} 
 
__global__ void ini (float *a)  
{  

__shared__ float s[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
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int ju=j0+j;  
int k=iu *NY+ju; 
s[i][j]=0.; 
a[k]=s[i][j];  

} 
 
__global__ void rubnix (float *a) 
 
{  

__shared__ float s[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 
s[i][j]=a[k]; 
__syncthreads(); 
if(iu==0 && 
ju>RY) s[i][j]=1.; 
if(iu==NX-2) 
s[i][j]=s[i-1][j]; 
__syncthreads(); 
if(ju==0)  
s[i][j]=0.; if(ju==NY-
1) s[i][j]=s[i][j-1]; 
if(ju==RY && 
iu<RX) s[i][j]=0.; 

 
if(iu==RX && ju<=RY) 
s[i][j]=s[i+1][j]*AI; 
__syncthreads(); 
a[k]=s[i][j]; 

 
} 
 
__global__ void rubniy (float *a) 
 
{  

__shared__ float s[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 
s[i][j]=a[k]; 
__syncthreads(); 
if(ju==0) 
s[i][j]=AI*s[i][j+1]; 
if(ju==NY-2) 
s[i][j]=s[i][j-1]; 
__syncthreads(); 
if(iu==0) 
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s[i][j]=0.; if(iu==NX-1) 
s[i][j]=s[i-1][j]; 
if(ju==RY && 
iu<=RX) 
s[i][j]=AI*s[i][j+1]; 
if(iu==RX && ju<RY) 
s[i][j]=0.; 
__syncthreads(); 
a[k]=s[i][j]; 

 
} 
 
__global__ void rubnip (float *a) 
 
{  

__shared__ float s[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD; 
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 
s[i][j]=a[k]; 
__syncthreads();  
if(ju==0 && iu!=0 && iu!=NX-1) 
s[i][j]=s[i][j+1];  
if(ju==NY-1 && iu!=0 && iu!=NX-1) 
s[i][j]=0.0;  
if(iu==0 && ju!=0 && ju!=NY-1) 
s[i][j]=0;  
if(iu==NX-1 && ju!=0 && ju!=NY-1) 
s[i][j]=0.;  
if(iu==RX && ju<=RY) 
s[i][j]=s[i+1][j]; 
if(iu<=RX && ju==RY) 
s[i][j]=s[i][j+1]; 
__syncthreads(); 
a[k]=s[i][j]; 

 
} 
 
__global__ void US (float *a, float *b, float *c, float *d) 
 
{  

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], u1[BD+2][BD+2]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 

 
u[i+1][j+1]=a[k]; 
if(i==0 && iu!=0) 
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u[0][j+1]=a[k-NY]; 
if(i==BD-1 && iu!=NX-1) 
u[BD+1][j+1]=a[k+NY]; 
if(j==0 && ju!=0) 
u[i+1][0]=a[k-1]; 
if(j==BD-1 && ju!=NY-1) 
u[i+1][BD+1]=a[k+1]; 
__syncthreads(); 

 
v[i+1][j+1]=b[k]; 
if(i==0 && iu!=0) 
v[0][j+1]=b[k-NY];  
if(i==BD-1 && iu!=NX-1) 
v[BD+1][j+1]=b[k+NY]; 
if(j==0 && ju!=0) 
v[i+1][0]=b[k-1]; 
if(j==BD-1 && ju!=NY-1) 
v[i+1][BD+1]=b[k+1]; 
__syncthreads(); 

 
p[i+1][j+1]=c[k]; 
if(i==0 && iu!=0) 
p[0][j+1]=c[k-NY];  
if(i==BD-1 && iu!=NX-1) 
p[BD+1][j+1]=c[k+NY]; 
if(j==0 && ju!=0) 
p[i+1][0]=c[k-1]; 
if(j==BD-1 && ju!=NY-1) 
p[i+1][BD+1]=c[k+1]; 
__syncthreads();  
if(iu<NX-2 && iu>0 && ju<NY-1 && ju>0 && ((iu<=RX && ju<=RY)!=1) ){ u1[i+1][j+1]=-
((pow(u[i+2][j+1],2)-pow(u[i][j+1],2))*NX/2.0f+(u[i+1][j+2]*0.5*(v[i+1][j+1] + v[i+2][j+1])-  

u[i+1][j]*0.5*(v[i+1][j] + v[i+2][j]))*NY*KT/2.0); u1[i+1][j+1]=u1[i+1][j+1]+(1.0/Re)*((u[i+2][j+1]-
2.0*u[i+1][j+1]+u[i][j+1])*NX*NX+(u[i+1][j+2]-  

2.0*u[i+1][j+1]+u[i+1][j])*NY*NY*KT*KT); 
u1[i+1][j+1]=u[i+1][j+1]+DT*(u1[i+1][j+1]-1.0*NX*(p[i+2][j+1]-p[i+1][j+1])); 
if(ju-IY<15)  
{  

if((iu-IX)<15 && (iu-IX)>=0) u1[i+1][j+1]=u1[i+1][j+1]+AMP*DT*(FX*exp(0-((iu-IX+0.5-
ju+IY)*0.001)*((iu-IX+0.5-  

ju+IY)*0.001)/(((ju-IY)*0.001+yb)*((ju-IY)*0.001+yb))-Bx*0.001*0.001*(ju-IY)*(ju-IY))); 
if((iu-IX)>-15 && (iu-IX)<0)  

u1[i+1][j+1]=u1[i+1][j+1]-AMP*DT*(FX*exp(0-((iu-IX+0.5-ju+IY)*0.001)*((iu-IX+0.5-
ju+IY)*0.001)/(((ju-IY)*0.001+yb)*((ju-IY)*0.001+yb))-Bx*0.001*0.001*(ju-IY)*(ju-IY))); 
 

}  
d[k]=u1[i+1][j+1];} 
else  
d[k]=a[k]; 
__syncthreads(); 

 
} 
 
__global__ void VS (float *a, float *b, float *c, float *d) 
 
{  

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], 
v1[BD+2][BD+2]; int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
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int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 

 
u[i+1][j+1]=a[k]; 
if(i==0 && iu!=0) 
u[0][j+1]=a[k-NY];  
if(i==BD-1 && iu!=NX-1) 
u[BD+1][j+1]=a[k+NY]; 
if(j==0 && ju!=0) 
u[i+1][0]=a[k-1]; 
if(j==BD-1 && ju!=NY-1) 
u[i+1][BD+1]=a[k+1]; 
__syncthreads(); 

 
v[i+1][j+1]=b[k]; 
if(i==0 && iu!=0) 
v[0][j+1]=b[k-NY]; 
if(i==BD-1 && iu!=NX-1) 
v[BD+1][j+1]=b[k+NY]; 
if(j==0 && ju!=0) 
v[i+1][0]=b[k-1]; 
if(j==BD-1 && ju!=NY-1) 
v[i+1][BD+1]=b[k+1]; 
__syncthreads(); 

 
p[i+1][j+1]=c[k]; 
if(i==0 && iu!=0) 
p[0][j+1]=c[k-NY]; 
if(i==BD-1 && iu!=NX-1) 
p[BD+1][j+1]=c[k+NY]; 
if(j==0 && ju!=0) 
p[i+1][0]=c[k-1]; 
if(j==BD-1 && ju!=NY-1) 
p[i+1][BD+1]=c[k+1]; 
__syncthreads(); 

 
if(iu<NX-1 && iu>0 && ju<NY-2 && ju>0 && ((iu<=RX && ju<=RY)!=1)){ 
v1[i+1][j+1]=-((v[i+2][j+1]*0.5*(u[i+1][j+1] + u[i+1][j+2])-v[i][j+1]*0.5*(u[i][j+1] + 

u[i][j+2]))*NX/2.0+(v[i+1][j+2]*v[i+1][j+2]-v[i+1][j]*v[i+1][j])*KT*NY/2.0); 
v1[i+1][j+1]=v1[i+1][j+1]+(1.0f/Re)*((v[i+2][j+1]-2.0f*v[i+1][j+1]+v[i][j+1])*NX*NX+(v[i+1][j+2]-  

2.0f*v[i+1][j+1]+v[i+1][j])*NY*NY*KT*KT); 
v1[i+1][j+1]=v[i+1][j+1]+DT*(v1[i+1][j+1]-(1.0f*NY*KT)*(p[i+1][j+2]-
p[i+1][j+1])); if(ju-IY<15)  
{  

if((iu-IX)<15 && (iu-IX)>-15) v1[i+1][j+1]=v1[i+1][j+1]+AMP*DT*(FY*exp(0-(iu-
IX)*0.001*0.001*(iu-IX)/(((ju-  

IY+0.5)*0.001+yb)*((ju-IY+0.5)*0.001+yb))-By*(ju+0.5-IY)*0.001*0.001*(ju+0.5-IY))); 
 
 

}  
d[k]=v1[i+1][j+1];} 
else  
d[k]=b[k]; 
__syncthreads(); 
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} 
 
__global__ void poiss (float *a, float *b, float *c, float *d)  
{  

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], corr[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD; 
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 

 
u[i+1][j+1]=a[k]; 
if(i==0 && iu!=0) 
u[0][j+1]=a[k-NY];  
if(i==BD-1 && iu!=NX-1) 
u[BD+1][j+1]=a[k+NY]; 
if(j==0 && ju!=0) 
u[i+1][0]=a[k-1]; 
if(j==BD-1 && ju!=NY-1) 
u[i+1][BD+1]=a[k+1]; 
__syncthreads(); 

 
v[i+1][j+1]=b[k]; 
if(i==0 && iu!=0) 
v[0][j+1]=b[k-NY];  
if(i==BD-1 && iu!=NX-1) 
v[BD+1][j+1]=b[k+NY]; 
if(j==0 && ju!=0) 
v[i+1][0]=b[k-1]; 
if(j==BD-1 && ju!=NY-1) 
v[i+1][BD+1]=b[k+1]; 
__syncthreads(); 

 
p[i+1][j+1]=c[k]; 
if(i==0 && iu!=0) 
p[0][j+1]=c[k-NY];  
if(i==BD-1 && iu!=NX-1) 
p[BD+1][j+1]=c[k+NY]; 
if(j==0 && ju!=0) 
p[i+1][0]=c[k-1]; 
if(j==BD-1 && ju!=NY-1) 
p[i+1][BD+1]=c[k+1]; 
__syncthreads(); 

 
corr[i][j]=c[k]; 
__syncthreads(); 

 
if(iu>0 && ju >0 && iu<NX-1 && ju<NY-1 && ((iu<=RX && ju<=RY)!=1)){  
c[k] = -(1.0/(2*(DT*NX*NX+DT*NY*NY*KT*KT)))*((-DT*NX*NX)*p[i+2][j+1]+(-

DT*NX*NX)*p[i][j+1]+(-DT*NY*NY*KT*KT)*p[i+1][j+2]+(-
DT*NY*NY*KT*KT)*p[i+1][j]+(1.0*NX)*(u[i+1][j+1] - u[i][j+1]) + (1.0*NY*KT)*(v[i+1][j+1]-v[i+1][j]));  

}  
corr[i][j]-=c[k]; 
if(corr[i][j]<0) 
corr[i][j]*=(-1); 
d[k]=corr[i][j]; 
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__syncthreads(); 
 
 
} 
 
__global__ void korek (float *a, float *b, float *c) 
{  

__shared__ float u[BD+2][BD+2], v[BD+2][BD+2], p[BD+2][BD+2], corr[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 

 
u[i+1][j+1]=a[k]; 
if(i==0 && iu!=0) 
u[0][j+1]=a[k-NY];  
if(i==BD-1 && iu!=NX-1) 
u[BD+1][j+1]=a[k+NY]; 
if(j==0 && ju!=0) 
u[i+1][0]=a[k-1]; 
if(j==BD-1 && ju!=NY-1) 
u[i+1][BD+1]=a[k+1]; 
__syncthreads(); 

 
v[i+1][j+1]=b[k]; 
if(i==0 && iu!=0) 
v[0][j+1]=b[k-NY]; 
if(i==BD-1 && iu!=NX-1) 
v[BD+1][j+1]=b[k+NY]; 
if(j==0 && ju!=0) 
v[i+1][0]=b[k-1]; 
if(j==BD-1 && ju!=NY-1) 
v[i+1][BD+1]=b[k+1]; 
__syncthreads(); 

 
p[i+1][j+1]=c[k]; 
if(i==0 && iu!=0) 
p[0][j+1]=c[k-NY];  
if(i==BD-1 && iu!=NX-1) 
p[BD+1][j+1]=c[k+NY]; 
if(j==0 && ju!=0) 
p[i+1][0]=c[k-1]; 
if(j==BD-1 && ju!=NY-1) 
p[i+1][BD+1]=c[k+1]; 
__syncthreads(); 

 
if(iu>0 && iu<NX-2 && ((iu<=RX && ju<=RY)!=1)){ 
u[i+1][j+1]-=DT*NX*(p[i+2][j+1]-p[i+1][j+1]); 
a[k]=u[i+1][j+1];} 

 
if(ju>0 && ju<NY-2 && ((iu<=RX && ju<=RY)!=1)){ 
v[i+1][j+1]-=DT*NY*KT*(p[i+1][j+2]-p[i+1][j+1]); 
b[k]=v[i+1][j+1];} 
__syncthreads(); 
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} 
 
__global__ void copy (float *a, float *b)  
{  

__shared__ float u[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD; 
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j;  
int k=iu *NY+ju; 

 
u[i][j]=a[k]; 
__syncthreads(); 

 
b[k]=u[i][j]; 
__syncthreads(); 

 
} 
 
__global__ void suma (float *a, float *b)  
{  

__shared__ float u[BD][BD]; 
int i = threadIdx.x;  
int j = threadIdx.y; 
int I = blockIdx.x; 
int J = blockIdx.y; 
int i0=I*BD;  
int j0=J*BD; 
int iu=i0+i; 
int ju=j0+j; 
int k=iu *NY+ju; 

 
u[i][j]=a[k]; 
__syncthreads(); 

 
b[k]+=u[i][j]; 
__syncthreads(); 

 
} 
 
 
void PRINT_VECT_VTK(int imax, int jmax, float U[NX][NY], float V[NX][NY], float *x, float *y) 

{ int i,j,k; 
 
int nx,ny,nz; 

float z = 0.0; 

FILE *vect_field; 

nx = imax; 
 
ny = jmax; 

nz = 1; 
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/* File grid.vtk*/ 
 
if((vect_field = fopen("a.vtk", "w")) == 

NULL) printf("The grid file could not be 

open\n"); else{ 
 
fprintf(vect_field, "# vtk DataFile Version 

2.0\n"); fprintf(vect_field, "Sample rectilinear 

grid\n"); fprintf(vect_field, "ASCII\n"); 
 
fprintf(vect_field, "DATASET RECTILINEAR_GRID\n"); 

fprintf(vect_field, "DIMENSIONS %d %d %d\n", nx, ny, 

nz); fprintf(vect_field, "X_COORDINATES %d float\n", nx); 

for(i=0; i<=nx-1; i++) 
 
fprintf(vect_field, "%f\n", x[i]); 
 
fprintf(vect_field, "Y_COORDINATES %d float\n", 

ny); for(j=0; j<=ny-1; j++) 
 
fprintf(vect_field, "%f\n", y[j]); 
 
fprintf(vect_field, "Z_COORDINATES %d float\n", 

nz); fprintf(vect_field, "%f\n", z); 
 
fprintf(vect_field, "POINT_DATA %d\n", (nx)*(ny)*(nz)); 

fprintf(vect_field, "VECTORS vectors float\n"); 
 
for(i=0; i<=ny-1; i++) 

for(j=0; j<=nx-1; j++){ 

fprintf(vect_field, "%f\t %f\t %f\n", U[j][i], V[j][i], 0.0); 
 
} 
 
} 
 
fclose(vect_field); 
 
} 
 
int main (void)  
{ 
 

clock_t t2,t1; 
FILE *fp, *fp1, *fp2;  
float a[NX*NY], *a_d, *a_d1, b[NX*NY], *b_d, *b_d1, c[NX*NY], *c_d, *c_d1, corr[NX*NY], *corr_d, 

max; 
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float dxx[NX], dyy[NY], xi[NX][NY], yi[NX][NY], dx1, dy1; 
int j,i,t, N=NX*NY, x, br, k, k1;  
float rop; 
rop=DT*NY*NY;  
dim3 blockDim, gridDim; 
blockDim.x=BD; 
blockDim.y=BD; 
gridDim.x=BX; 
gridDim.y=BY; 
fp=fopen("x.dat", "w"); 
fp1=fopen("y.dat", "w"); 
fp2=fopen("tlak.dat", "w"); 

t1=clock();  
cudaMalloc((void **)&a_d, sizeof(float)*NX*NY); 
cudaMalloc((void **)&a_d1, sizeof(float)*NX*NY); 

 
cudaMalloc((void **)&b_d, sizeof(float)*NX*NY); 
cudaMalloc((void **)&b_d1, sizeof(float)*NX*NY); 

 
cudaMalloc((void **)&c_d, sizeof(float)*NX*NY); 
cudaMalloc((void **)&c_d1, sizeof(float)*NX*NY); 

 
cudaMalloc((void **)&corr_d, sizeof(float)*NX*NY); 

 
inix <<< gridDim, blockDim >>> (a_d); 
inix <<< gridDim, blockDim >>> (a_d1); 
ini <<< gridDim, blockDim >>> (b_d); 
ini <<< gridDim, blockDim >>> (b_d1); 
ini <<< gridDim, blockDim >>> (c_d); 
ini <<< gridDim, blockDim >>> (c_d1); 
printf("Start");  
for(t=0;t<T;t++)  
{  
US <<<gridDim, blockDim>>> (a_d, b_d, c_d, 
a_d1); VS <<<gridDim, blockDim>>> (a_d, b_d, c_d, 
b_d1); rubnix <<<gridDim, blockDim>>> (a_d1);  
rubniy <<<gridDim, blockDim>>> (b_d1); 
for(i=0;i<30;i++)  
poiss<<<gridDim,blockDim>>>(a_d1, b_d1, c_d1, corr_d); 

 
 
 
 

rubnip<<<gridDim,blockDim>>>(c_d1); 
korek<<<gridDim,blockDim>>>(a_d1, b_d1, 
c_d1); rubnix <<<gridDim, blockDim>>> (a_d1);  
rubniy <<<gridDim, blockDim>>> (b_d1); 
suma <<<gridDim, blockDim>>> (c_d1, c_d); 
ini <<<gridDim, blockDim>>> (c_d1);  
rubnip <<<gridDim, blockDim>>> (c_d); 

 
//// 
 

US <<<gridDim, blockDim>>> (a_d1, b_d, c_d, 
a_d); VS <<<gridDim, blockDim>>> (a_d, b_d1, c_d, 
b_d); rubnix <<<gridDim, blockDim>>> (a_d);  
rubniy <<<gridDim, blockDim>>> (b_d); 

 
for(i=0;i<30;i++)  
poiss<<<gridDim,blockDim>>>(a_d, b_d, c_d1, corr_d); 
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rubnip<<<gridDim,blockDim>>>(c_d1); 
korek<<<gridDim,blockDim>>>(a_d, b_d, 
c_d1); rubnix <<<gridDim, blockDim>>> (a_d);  
rubniy <<<gridDim, blockDim>>> (b_d); 
suma <<<gridDim, blockDim>>> (c_d1, c_d); 
ini <<<gridDim, blockDim>>> (c_d1);  
rubnip <<<gridDim, blockDim>>> (c_d); 
 
}  
cudaMemcpy(a, a_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost); 
cudaMemcpy(b, b_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost); 
cudaMemcpy(c, c_d, NX*NY*sizeof(float), cudaMemcpyDeviceToHost);  

for(i=0;i<NX;i++) 
for(j=0;j<NY;j++) if(i!=NX-1)  
fprintf(fp, "\n%d %d %f", i, j, a[i*NY+j]); 
for(i=0;i<NX;i++)  

for(j=0;j<NY;j++) if(j!=NY-1)  
fprintf(fp1, "\n%d %d %f", i, j, b[i*NY+j]); 
for(i=0;i<NX;i++) 

for(j=0;j<NY;j++)  
fprintf(fp2, "\n%d %d %f", i, j, c[i*NY+j]); 

t2=clock(); 
 

printf(" %f\n",((float)(t2-
t1))/CLOCKS_PER_SEC); cudaFree(a_d);  
cudaFree(a_d1); 
cudaFree(b_d); 
cudaFree(b_d1); 
cudaFree(c_d); 
cudaFree(c_d1); 

 
//Ispis za paraview 

 
dx1=1.0*NX-1; 
dy1=KT*NY-1; 
for(i=0;i<NX;i++) 

dxx[i]=1.0*i/dx1;  
for(i=0;i<NY;i++)  

dyy[i]=1.0*i/dy1;  
for(i=0;i<NX;i++)  

{ 
xi[i][0]=0.0;  
yi[i][0]=0.0; 
xi[i][NY-1]=0.0; 
yi[i][NY-1]=0.0;  

}  
for(i=0;i<NY;i++)  
{ 

xi[0][i]=1.0;  
yi[0][i]=0.0; 
xi[NX-1][i]=0.0; 
yi[NX-1][i]=0.0;  

} 
 
for(i=1;i<=NX-2;i++) 

for(j=1;j<=NY-1;j++) 
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{  
k=(i-1)*NY+j; 
k1=i*NY+j; 
xi[i][j]=0.5*(a[k]+a[k+NY]);  

}  
for(i=1;i<=NX-1;i++) 

for(j=1;j<=NY-2;j++) 
{  

k=i*NY+j-1; k1=i*NY+j; 

yi[i][j]=0.5*(b[k]+b[k+1]); 

}  
i=NX;  
j=NY;  
PRINT_VECT_VTK(i, j, xi, yi, dxx, dyy); 

 
 
} 
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