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Department of Astronomy, University of Washington, Seattle, WA 98195; ivezic@astro.washington.edu

Tomislav Jurkić
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ABSTRACT

We examine the ‘‘puffed-up inner disk’’ model proposed by Dullemond, Dominik, & Natta for explaining the near-
IR excess radiation from Herbig Ae/Be stars. Detailed model computations show that the observed near-IR excess
requires more hot dust than is contained in the puffed-up disk rim. The rim can produce the observed near-IR excess
only if its dust has perfectly gray opacity, but such dust is in conflict with the observed 10 �m spectral feature.We find
that a compact (�10 AU), tenuous (�V P 0:4), dusty halo around the disk inner regions contains enough dust to
readily explain the observations. Furthermore, this model also resolves the puzzling relationship noted byMonnier &
Millan-Gabet between luminosity and the interferometric inner radii of disks.

Subject headinggs: accretion, accretion disks — circumstellar matter — dust, extinction —
stars: pre–main-sequence

1. INTRODUCTION

Processes in the immediate vicinity of young pre-main-
sequence stars influence the initial stellar evolution and the forma-
tion of terrestrial planets. Since small scales of several astronomical
units around a star are difficult to resolve, we still lack a clear
understanding of processes such as disk accretion, the launch-
ing of bipolar jets and winds, and the dynamics and reprocess-
ing of dust in the inner hot disk regions. The dust geometry is
one of the basic ingredients needed for constraining theoreti-
cal models of these processes. Traditionally, this geometry has
been deduced from the spectral energy distribution (SED), which
is dominated at infrared wavelengths by dust emission.

A widely popular geometrical description is the two-layered
flared-disk model developed by Chiang & Goldreich (1997,
hereafter CG97). The model gives a simple method for estimat-
ing the flux from the optically thin surface layer of an optically
thick disk directly exposed to the stellar radiation and from the
colder disk interior heated by the warmer surface. The simplic-
ity of the method, together with evidence for the existence of disks
based on radio imaging, made this model a dominant descrip-
tion of TTau andHerbigAe/Be stars (HAEBEs; the intermediate-
mass, 1:5PM�/M�P10, counterparts of T Tau stars).

Although the CG97 model successfully explains the observed
SEDs, advances in imaging techniques revealed shortcomings of
this model. Analyzing images at scattering and dust emission
wavelengths, Miroshnichenko et al. (1999) concluded that disks
alone cannot explain the imaging observations, at least not for
some HAEBEs. Instead they modeled the SED with an optically
thin halo surrounding an optically thick disk and emphasized that
only multiwavelength imaging can distinguish between this and
the CG97 model. Subsequent detailed modeling of imaging data
in numerous systems revealed the existence of dusty halos around

the putative flared disks (Gómez & D’Alessio 2000; Schneider
et al. 2003; Stapelfeldt et al. 2003). The inadequacy of the SED
as the sole analysis tool in determining the geometry was fur-
ther demonstrated by Vinković et al. (2003, hereafter V03). They
showed that the mathematical expression for the SED calcula-
tion in the CG97 model can be transformed into that for the halo-
embedded disk and vice versa. This has far-reaching consequences
for all studies based solely on SEDs. If not supported by imag-
ing at various wavelengths, SED models can lead to erroneous
conclusions about the spatial distribution of dust.
The disk inner region in HAEBEs (within �10 AU from

the star) proved to be more complicated than the original CG97
model. Thermal dust emission from this region peaks at short
wavelengths, creating a near-IR bump (1 �m < k < 8 �m) in the
SED of many HAEBEs (Hillenbrand et al. 1992). Chiang et al.
(2001) noticed that the CG97 model did not produce enough
near-IR flux to explain the bump. This implies that the disk flar-
ing, which increases the emitting volume of the optically thin
disk surface, is too small at the inner radii. Since the disk geom-
etry is constrained by vertical hydrostatic equilibrium, an addi-
tional hot dust component is required for explaining the near-IR
bump. To solve this problem, Dullemond et al. (2001, hereafter
DDN01) proposed modifying the CG97 geometry without in-
troducing an additional component. They noted that the disk ver-
tical height is increased (puffed up) at its inner rim because there
the disk interior is directly exposed to stellar radiation and is
hotter than in the CG97 model at the same radius. The rim is the
hottest region of the disk, and with its increased size it is pos-
sible to boost the near-IR flux. This puffing of the rim is equiv-
alent to the disk extra flaring that was identified as missing in the
CG97 model by Chiang et al. (2001).
Evidence in support of the DDN01 model was garnered from

SED modeling of a large sample of HAEBEs (Dominik et al.
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2003) and recently also of T Tau stars (Muzerolle et al. 2003). Still,
the inner disk geometry remains controversial. Recent advances
in near-IR interferometry provide imaging data of this region,
and the first results from a large sample of HAEBEs show that
many of these objects appear close to circular symmetry (Millan-
Gabet et al. 2001; Eisner et al. 2004). This is an unusual result if
disk inclinations are random. It also creates a new set of prob-
lems when these objects are interpreted as almost face-on disks,
because that often conflicts with outer disk inclinations derived
from other imaging observations (Hubble Space Telescope [HST ],
radio). This result is difficult to accommodate in disk-only mod-
els but is easily explained by halo-embedded disks (V03).

In this paper we reexamine the DDN01 model and the theo-
retical approach behind it and identify some unresolved issues in
its description of the rim emission. We employ exact radiative
transfer calculations of the rim’s brightness and show that the
concept of a puffed-up rim requires some fine-tuning of the model
parameters in order to produce enough flux to explain the obser-
vations (e.g., the dust must be perfectly gray).

Various independent observations indicate the existence of
compact halos (�10 AU) around the disk inner regions (see V03
and references within), and we find that such halos readily ex-
plain the observed near-IR excess as well. Furthermore, the halos
also resolve the puzzling relationship noted byMonnier &Millan-
Gabet (2002) between luminosity and the interferometric inner
radii of disks.

2. EMISSION FROM THE INNER WALL

A distinct feature of the near-IR bump is its anomalously
high flux Fk as compared with the stellar emission. To quantify
this effect we introduce the flux ratio F2 �m/F1 �m as a measure of
the strength of the near-IR bump; this ratio increases when the
prominence of the bump becomes larger. These wavelengths
are chosen because the 2 �m flux is dominated by the dust, while
the 1 �m flux is dominated by the star.

Figure 1 summarizes the observed values of the F2 �m/F1 �m

flux ratio for a sample of well-observed stars, with data compiled
from the following references: Low (1970), Gillett & Stein (1971),
Strom et al. (1972, 1989), Allen (1973), Cohen (1973a, 1973b,
1973c, 1975, 1980), Glass & Penston (1974), Cohen & Schwartz
(1976), Kolotilov et al. (1977), Bouchet & Swings (1982),
Lorenzetti et al. (1983), Tjin A Djie et al. (1984), Kilkenny et al.
(1985), Thé et al. (1985), Olnon et al. (1986), Berrilli et al. (1987,
1992), Hu et al. (1989), Lawrence et al. (1990), Fouqué et al.
(1992), Hutchinson et al. (1994), Li et al. (1994), Prusti et al.
(1994), Sylvester et al. (1996), Garcia-Lario et al. (1997), Malfait
et al. (1998), Herbst & Shevchenko (1999), van den Ancker et al.
(2000), deWinter et al. (2001), and A. S. Miroshnichenko (2005,
private communication).

Dust extinction at 1 �m is larger than at 2 �m and could
enhance the observed strength of the near-IR bump by�20% for
AV ¼ 1, and therefore only objects with AV P1 were considered.
Since the reddening correction is negligible, the uncorrected data
displayed in the figure represent the true range of near-IR bump
strength in Herbig Ae stars. The underlying stars of all objects
have temperatures of about 10,000K, which givesF2 �m/F1 �m ¼
0:09. Yet in all objects this ratio exceeds 0.25, reflecting a large
near-IR excess from hot dust emission (Hillenbrand et al. 1992).
The luminosity of each object is displayed together with its name
in Figure 1, and it ranges from �5 to �80 L�. Luminosity does
not show any correlation with the near-IR bump strength, re-
affirming our conclusion that these data can be used as a general
description of the near-IR bump strength in Herbig Ae stars.

2.1. General Description of the Rim Emission

At the inner rim, gas that is typically part of the disk cold in-
terior becomes directly exposed to the stellar radiation and ex-
pands to higher scale heights. According to DDN01, emission
from such a puffed-up rim can explain the near-IR bump in the
spectrum of Herbig Ae/Be stars. The rim geometry is sketched
in Figure 2. The rim is modeled as a cylinder of radius Rrim and
height 2Hrim centered on the star. The basic assumption of this
model is that the rim is optically thick in the near-IR and shorter
wavelengths. This maximizes the rim energy output.

The original DDN01 model (Dullemond et al. 2001) suc-
cessfully explained the data, but it was based on an approximate
treatment of the rim height and emission. More realistic models
were calculated by the authors of the DDN01 model in their sub-
sequent work. Dullemond (2002) used a two-dimensional radi-
ative transfer model for gray dust combined with the hydrostatic
equilibrium. The obtained near-IR bump strength is shown in
Figure 1 (solid line). The maximum strength is still too low to
explain all the data, but it can accommodate the majority of ob-
served near-IR bump strengths.

A dramatic reduction of the DDN01 model efficacy happens
when amixture of small and big grains is introduced. Dullemond
& Dominik (2004, hereafter DD04) combined 2 mm (big, gray
grains) and 0.1 �m (small) grains in various ratios and performed
two-dimensional radiative transfer calculations coupled to the
equation of vertical hydrostatics and dust settling. The model
fails to explain the data evenwhen 99.999%of the dust mass is in
big grains (see Fig. 1). The behavior suggested by this result is
unexpected; a decrease in the small grain population leaves more
gray dust grains in the mix, which should move the whole so-
lution closer to the gray dust result of Dullemond (2002).

A closer inspection of obtained results shows that the temper-
ature of big grains in such amultigrainmixture is lower than in the
pure gray model. In a mixture, both small and big grains absorb a
fraction of the local energy density and participate in providing
the local diffuse heating. But, as shown in the next section (see
also eq. [A8] in Appendix A), small grains are a very inefficient
source of local diffuse heating, resulting in less efficient heating
of the big grains than in the pure graymodel.With such a tempera-
ture decrease, the vertical hydrostatic equilibrium cannot produce
disk puffing comparable to the gray model. While in the gray
model the puffed-up disk rim height is close to Hrim/Rrim ¼ 0:2,
multigrainmodels have onlyHrim/Rrim < 0:15. Since the observed
rim emission scales with rim height, this is the major reason be-
hind the failure of themultigrainmodels to explain the data. Of the
models presented, the one with the lowest fraction of small grains
yields the largest discrepancy because it suffers the largest reduc-
tion in the small grain contribution to gas heating and rim puffing,
while still having enough small grains to suppress heating of the
big grains. In quantifying this effect, the mass ratio between big
and small grains thatDD04 used is not themost illustrative choice.
Amore appropriate quantity would be the ‘‘equivalent’’ grain size
of the grain mixture. In the case of two grain populations with
sizes abig and asmall and fractional number densities Xbig and Xsmall

(such that Xbig þ Xsmall ¼ 1), the average grain size obeys

ha2i ¼ Xbiga
2
big þ Xsmalla

2
small: ð1Þ

The number fractions can be deduced from the reported pa-
rameters of the DD04 models: fixed inner and outer disk radius,
fixed total disk mass, and total dust mass in big and small grains.
The model with 99.999% of the dust mass in big grains has only
Xbig ¼ 1:25 ; 10�8, and Xsmall � 1, yielding ha2i1/2 � 0:25 �m.
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This grain size is too small to be considered equivalent to the gray
dust model.
It is important to note that this equivalent grain is just an

indicator of the overall solution and cannot be used as a general
replacement (average or synthetic) grain for the radiative transfer
calculation. As already shown by Wolf (2003), the approxima-
tion of an averaged single grain as a replacement for a dust mix-
ture breaks down at the surface of a dust cloud (or in this case the
rim surface). A more detailed study of multigrain disk models
will be presented in a separate publication, while in the next sec-
tions we explore the limits of possible DDN01 model applica-
bility in the context of single dust grains.

2.2. Approximate Solution for the Rim Emission

We denote with R� and T� the stellar radius and temperature,
respectively. At distance d and direction iwhere the star is free of

Fig. 1.—Strength of near-IR bump in Herbig Ae stars. The ‘‘naked star’’ arrow on the right axis marks the strength for a 10,000 K blackbody spectrum. Other arrows
indicate the data (see x 2 for references) for systems with unknown disk inclination angles. These angles were estimated for three stars, as indicated. HD 163296: (1) Grady
et al. (2000), (2) Mannings & Sargent (1997); HD 100546: (1) Grady et al. (2001); Augereau et al. (2001), (2) Liu et al. (2003); AB Aur: (1) Eisner et al. (2004, 2003),
(2) Semenov et al. (2005), (3) Fukagawa et al. (2004), (4) Grady et al. (1999), (5) Liu et al. (2005), (6) Mannings & Sargent (1997), (7) Corder et al. (2005), (8) Piétu et al.
(2005). Stellar luminosities in units of L� are indicated together with the stellar name. The solid line is a two-dimensional radiative transfer model of a puffed-up gray dust
wall by Dullemond (2002). The filled circles with letters (realistic models, inclination i ¼ 45�) are two-dimensional radiative transfer models by Dullemond & Dominik
(2004) that include amixture of big and small dust grains. The rim height in all thesemodels is calculated directly from the equation of vertical hydrostatics.While the gray
dust model can explain the majority of data, the realistic models of puffed up rim fail to explain the data even when 99.999% of dust mass is in big (gray) grains.

Fig. 2.—Sketch of the puffed up inner disk wall (see xx 2.1 and 2.2 for details).
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rim obscuration (see Fig. 2), the overall observed flux at wave-
length k is (R�/d)

2�Bk(T�)þ F rim
k (i). If I rimk (i) is the rim surface

brightness in the observer’s direction, then

F rim
k (i) ¼ 1

d 2
I rimk (i)4HrimRrim sin i: ð2Þ

Here the cylindrical visible surface is replaced with a flat rectan-
gle. This approximation maximizes the flux since curvature
decreases the projected area of portions of the visible surface,
reducing the observed flux. We also assume that the stellar il-
lumination is perpendicular to all portions of the rim. This too
maximizes the observed flux.

The observed rim flux in equation (2) is determined by the rim
height, surface brightness and radius. Our two-dimensional ra-
diative transfer calculations, described in x 2.3, confirm that the
rim emission is indeed proportional to the rim height; therefore,
we maximize the rim emission in this study by using Hrim ¼
0:2Rrim, the maximum height allowed before the rim starts to
shadow large portions of the disk (DDN01). The solution for any
other rim height can be derived from our models by a simple
scaling of the rim emission.

The surface brightness of a gray dust rim can be approximated
with Bk(Trim), where Trim is the dust sublimation temperature.
The description of a nongray surface must take into account the
spectral variation of optical depth of the emitting optically thin
surface layer. This was done by Chiang &Goldreich (1997). Ac-
cording to their model, the surface layer vertical optical thickness
is unity in the visual (a characteristic wavelength of the stellar
radiation absorption), �V ¼ 1, and therefore at all other wave-
lengths it is �k ¼ �absk /�absV � qk. The rim emits in the near-IR
where qk < 1 (the dust near-IR opacity is smaller than in the
visual), thus the surface layer is optically thin at these wave-
lengths and its emission is reduced accordingly. Therefore, the
rim surface brightness becomes ’qkBk(Trim)/sin i and the ob-
served rim flux is

Fk ’
4

d 2
Bk(Trim)

Hrim

Rrim

R2
rim ;

qk nongray dust

sin i gray dust

�
ð3Þ

This result shows that a nongray rim creates a smaller IR
excess than a gray opacity rim. In addition, nongray opacity
removes the angle dependence from the rim emission (we expect
this approximation to break down at very small inclination an-
gles, where qk � sin i).

The rim radius is derived from radiative equilibrium, which
gives (e.g., Ivezić & Elitzur 1997)

Rrim ¼ 1

2
R�

T�

Trim

� �2 �̄(T�)

�̄(Trim)
 1þ Hrim

Rrim

� �� �1=2
: ð4Þ

Here �̄(T ) is the Planck average of �absk at temperature T,  
describes the correction for diffuse heating from the rim interior,1

and 1þ Hrim/Rrim is a correction (described by DDN01) for self-
irradiation from the other side of the rim. In Appendix A we
derive an approximate solution, which shows that gray dust,
with �̄(T�)/�̄(Trim) ¼ 1, has  � 4 and that nongray dust, with
�̄(T�)/�̄(Trim) > 1, has  � 1. Note that for gray dust this makes
equation (4) identical to the original DDN01 expression (their

eq. [14]). The approximate near-IR bump strength is given in
equation (A10), yielding

F2 �m

F1 �m
�

0:23 nongray dust

0:09þ 0:52 sin i gray dust

�
ð5Þ

for T� ¼ 10;000 K, Trim ¼ 1500 K, and Hrim/Rrim ¼ 0:2. A
comparison of this result with the data in Figure 1 shows that the
near-IR bump of nongray dust is too small to explain the obser-
vations. Therefore, interpretation of the near-IR bump in Herbig
Ae stars with inner disk puffing places a strong constraint on dust
evolution in this region. The dust must grow to a size greatly ex-
ceeding the initial interstellar size distribution, and small grains
must be depleted to such a large extent that the inner disk opac-
ity can be considered gray. In the next subsection we employ ex-
act two-dimensional radiative transfer code to obtain accurate
values for  and place more precise constrains on the DDN01
model.

2.3. Exact Models for Single-Size Grains

To examine the validity of conclusions based on our approx-
imate solution, we performed full two-dimensional radiative
transfer calculations for an optically thick torus centered on a
10,000 K star. The torus cross section is sketched in Figure 2; it
is a square with side length of 2Hrim, whereHrim ¼ 0:2Rrim. This
configuration is the same as that described by DDN01, where the
puffed-up disk rim is a cylindrical surface directly exposed to
stellar radiation, while the rest of the inner disk is in its shadow.
The dust has a sublimation temperature Tsub ¼ 1500 K and con-
stant density everywhere in the torus, with horizontal and vertical
optical depths �V ¼ 10;000 in the visual. Different density struc-
tures do not change our results as long as the �V ¼ 1 layer on the
illuminated surface is geometrically much smaller than Hrim.

Radiative transfer modeling was conducted with our code
LELUYA2 that works with axially symmetric dust configura-
tions. It solves the integral equation of the formal solution of
radiative transfer, including dust scattering, absorption, and ther-
mal emission. The solution is based on a long-characteristics
approach to the direct method of solving thematrix version of the
integral equation (Kurucz 1969).

The results are shown in Figure 3 together with the original
DDN01 solution (dashed line). Our two-dimensional model re-
sults for gray dust without scattering (solid line) are very close
to the Dullemond (2002) results, shown in Figure 1, which also
included vertical hydrostatics equilibrium. This model has ¼ 4.
Its rim radius (49R�) and flux are essentially the same as the
original DDN01 model, confirming that a puffed-up rim of gray
dust is capable of explaining the near-IR bump.

Since realistic dust is not gray at all wavelengths, we calcu-
latedmodels for silicate dust with different grain radii, employing
optical constants from Dorschner et al. (1995) (x ¼ 0:4 olivine).
Figure 3 shows results for three representative grain radii, with the
corresponding rim properties summarized in Table 1. Our model
results for 0.1 �m grains are almost identical to the Dullemond
(2002) results for purely small grains (see Fig. 1). As is evident
from Figure 3, the model can explain the data when the grain radii
are 2 and 0.5 �m, but it starts to fail as a general explanation of the
near-IR bump when the grain radius drops below �0.1 �m.

A decrease in grain size has two opposing effects on the rim
flux. On one hand, the ratio �̄(T�)/�̄(Tsub) is increasing, leading
to a larger rim radius and emitting area and thus enhancing the

1 Note that Ivezić & Elitzur (1997) used � ¼ �̄(T�)/�̄(Trim)½ � . 2 See http://www.leluya.org.
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rim emission. On the other, the rim surface brightness is de-
clining because qk is decreasing, reducing the rim emission. The
net result is that maximum rim emission occurs at grain radius of
�0.5 �m, which, as is evident from Figure 4, corresponds to the
transition between gray and nongray opacity in the near-IR re-
gion. This is predominantly a grain size effect; the dust chemistry
introduces only second order corrections.

When the grain radius drops below 0.5 �m the dust opacity
becomes nongray in the near-IR and the puffed-up rim model
begins to fail. The flux of the 0.1�mgrainmodel, which is almost

TABLE 1

The Exact Single-Grain DDN01 Model Results

Grain Radius Rrim/R� �̄(T�)/�̄(Tsub)  q(2 �m)

Gray.......................... 49 1.0 4.0 1.00

2 �m......................... 52 1.3 3.6 0.99

0.5 �m...................... 68 3.6 2.3 0.45

0.1 �m...................... 150 28 1.3 0.10

Fig. 3.—Same as Fig. 1, but for single-size grain models withHrim ¼ 0:2Rrim. The shaded areas are regions without flux contribution from the rim, because of either
the absence of dust or rim self-shadowing. The dashed line is the original DDN01 model (Dullemond et al. 2001); all other lines show the results of exact two-
dimensional radiative transfer calculations (see x 2.3).

Fig. 4.—Dust absorption cross sections for the three grain radii used in the
exact radiative transfer calculations shown in Fig. 3.
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angle independent, as predicted by equation (A10), can repro-
duce only the weakest near-IR bumps. Therefore the DDN01
model can explain the near-IR bump in Herbig Ae stars only
when both of the following conditions are met:

1. the rim dust opacity is gray in the near-IR (grain radiusk
0.5�m), and

2. the disk is puffed to a height Hrim/Rrimk 0:15.

Figure 1 shows that for these conditions to be satisfied, the
DDN01 model requires the complete absence of small grains in
the disk inner region. Therefore, for this model to work, the rim
dust must undergo substantial growth that also fully depletes the
population of small grains. At the same time, this process cannot
be so extreme in the rest of the disk because the mid-IR spectrum
of Herbig Ae stars displays the dust features of small grain emis-
sion (van Boekel et al. 2005).

3. THE NEAR-IR BUMP AND IMAGING EXPLAINED
WITH A DUSTY HALO

A dusty halo around the disk inner regions (�10AU) has been
invoked to explain polarimetric measurements (Yudin 2000) and
correlations between variabilities in the optical and near-IR
(Eiroa et al. 2002). Such small regions are not yet accessible to
direct imaging but have been resolved in near-IR interferometry
by Millan-Gabet et al. (2001), who also favor the halo geometry,
although the interpretation of these visibility data is still model
dependent. Direct imaging is currently available only for larger
scales, and these observations have revealed larger halos (k100AU)
around some objects (V03). The relation between the inner and
outer halos, whether they are simply the inner and outer regions
of the same circumstellar component, remains an open ques-
tion. However, at the phenomenological level this issue is not
relevant because the two can be treated as separate circumstellar
components if both are optically thin. The inner halo is then
radiatively decoupled from the cooler outer halo, simplifying
the study of inner halos.

Here we explore the contribution of the inner halo to the near-
IR emission. The halo precise geometry is not particularly im-
portant. It could be elongated, clumpy or inhomogeneous, but as
long as it is optically thin it can be approximated with spherical
geometry. The reason is that the temperature of optically thin
dust is dominated by the stellar heating, resulting in spherically
symmetric isotherms and circularly symmetric images at wave-
lengths where the dust thermal emission dominates over scat-
tering (V03). Optically thin halos are also transparent to the disk
emission, andwe can ignore the disk effect on the halo. The exact
image shape ultimately depends on detailed dust density and
grain properties, telescope resolution and sensitivity, observa-
tional wavelength, and the intrinsic ratio between the disk and
halo surface brightness. Various observations of R Mon vividly
illustrate these effects (see Weigelt et al. 2002).

If the halo optical depth at visual wavelengths �V is larger than
1
4
H /R, whereH /R is the disk flaring at the halo outer radius, then

the halo dominates the SED coming from the dust within radius
R around the star (see V03 for details). At near-IR wavelengths,
this condition is satisfied for the halo optical depths of interest
here (�V k0:1).

3.1. Theoretical Examples

Our models consist of a star surrounded by a spherical halo
with radial density profile � / r�p. The halo extends from inner
radius Rin, set by the dust sublimation temperature Tsub, to outer
radius Rout.

The dust chemistry is x ¼ 0:4 olivine from Dorschner et al.
(1995), with grain size distribution n(a) / a�q between the min-
imum grain radius amin and maximum amax. We use q ¼ 2 and
amin ¼ 0:01 �m and vary amax. The radial optical depth of the
halo is specified at k ¼ 0:55 �m as �V . The radiative transfer
problem is solved with the code DUSTY (Ivezić et al. 1999),
which takes advantage of the scaling properties of the radiative
transfer problem for dust absorption, emission, and scattering
(Ivezić & Elitzur 1997).

Figures 5 and 6 show some SED examples for dusty halos
around 10,500 and 5000K stars, representative of Herbig Ae and
T Tauri stars, respectively. The stellar spectrum is taken from
Kurucz models. In addition to the strength parameter F2 �m/F1 �m,
the flux ratio F4 �m/F2 �m can be used to characterize the near-IR
bump shape. Both the strength and shape parameters are influ-
enced by changes in the dust sublimation temperature, maximum
grain size, halo outer radius, and optical depth. Comparison of the
data with halo model results for the strength and shape parameters
is shown in Figure 7 for the same objects as in Figure 3. Models
for p ¼ 1 and p ¼ 2 halos around a 10,500 K star are dispersed
all over the diagram. Arrows show how the model results move
in the diagram as the model parameters are varied, indicating
that various degeneracies are possible. The observed levels of
bump strength and shape are readily reproduced with plausible
values of the model parameters.

We briefly summarize the effect of various halo parameters on
the strength and shape of the near-IR bump.

Optical depth.—A larger optical depth results in a stronger
near-IR bump. This reflects the dependence of flux on the total
mass of emitting dust (eqs. [A7] and [A12] in V03). The dust
sublimation radius Rin is only slightly affected, as expected in the
optically thin limit, at which the diffuse radiation is negligible.

Grain size.—Larger grains shift the near-IR bump toward
longer wavelengths and make it appear more flat. With increased
grain size the opacity becomes more similar to gray dust, result-
ing in an r�0:5 temperature profile, since the geometrical dilu-
tion of stellar heating is the only cause of temperature variation.
Smaller grain sizes create steeper radial temperature profiles.
Therefore, for a given density profile smaller grains emit relatively
more radiation at shorter wavelengths than larger grains. In prac-
tice, grain sizes come in mixtures and sublimate at different radial
distances, greatly adding to the complexity of the problem. The
SED models are therefore prone to various model degeneracies.

Sublimation temperature.—With a higher dust sublimation
temperature, the near-IR bump shifts to shorter wavelengths,
reflecting the shift of the emission peak.

Outer radius.—The halo size can affect the near-IR bump in
twoways. On the one hand, reducing the outer radius while keep-
ing the dust distribution fixed reduces also the total optical depth.
The near-IR bump then starts to decrease when the dust removal
reaches the near-IR emission regions at radial distance �10Rin

(temperatures k500 K). On the other, reducing the outer radius
at a fixed halo optical depth is equivalent to redistributing the dust
within the halo. The bump then becomes stronger as the outer
radius is reduced because more dust is shifted toward smaller radii
and higher temperatures.

Stellar temperature.—As its temperature decreases, the emis-
sion from the star starts to blend with that from the halo, and the
near-IR bump disappears. Only a careful analysis can then sep-
arate the stellar from the diffuse flux in the near-IR and reveal the
bump. For comparison with T Tau stars, Figure 7 shows also
5000Kmodels (markedwith T). In spite of the large variations in
halo parameters, these models display only a limited range of
bump strengths and shapes close to the naked star values. This
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Fig. 5.—SED variation with the parameters of small spherical halos around stars with 10,500 and 5000 K (Kurucz stellar models). The radial density profile is
� / y�1. The dust chemistry is x ¼ 0:4 olivine from Dorschner et al. (1995). The grain size distribution is n(a) / a�2 between minimum grain radius 0.01 �m and
maximum amax, as marked. The other varied parameters are the dust sublimation temperature Tsub, which sets the halo inner radius Rin, the halo outer radius Rout and its
optical depth at visual � . Note the variation of Rin among models, especially when amax is increased.
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Fig. 6.—Same as Fig. 5, except that � / y�2.
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explains why the near-IR bump was not originally recognized in
T Tau stars, while it was easily detected in Herbig Ae/Be stars.

3.2. Observational Examples

We show three examples that illustrate different circumstellar
dust configurations: AB Aur, HD 100546, and HD 163296.HST
imaging suggests that AB Aur and HD 100546 have large halos
at radii k100, while HD 163296 shows only a disk (Grady et al.
2003). Irrespective of the existence of a large halo, all three ob-
jects show a near-IR bump, with the strongest bump in AB Aur.
Since the focus of this study is the near-IR bump, the large-scale
halos are irrelevant here, and we only consider a small halo
within �10 AU around the star.

Our fits to the data are shown in Figure 8, with the model
parameters listed in Table 2. The halo outer radius is 10 times the
dust sublimation radius in all models. Since our focus is the near-
IR bump, our model consists only of the star and the inner halo,
and only data at wavelengths shorter then 6 �m were employed

in the fitting. The derived model parameters are not unique, since
various degeneracies exist in model results for the near-IR flux
(see x 3.1). For example, the ‘‘hot component’’ in the Bouwman
et al. (2000) models can be interpreted as a small-scale halo with
dust properties different from those in our study.

3.2.1. AB Aur

The emission from AB Aur has been resolved at various
wavelengths and interpreted as a disk with vastly different esti-
mates for the inclination angle, as listed in Table 3. Such a dis-
parity is expected in halo-embedded disks (see Fig. 7 in V03)
because, as noted by Miroshnichenko et al. (1999), the halo
dominates the images at wavelengths extending to �100 �m or
so, and the disk emerges only at longer wavelengths. Interpre-
tation of molecular line images, too, must be done carefully to
avoid confusion between the halo and disk contributions.
A general conclusion about the AB Aur inner halo is that it

must have a radial density profile between 1/r and 1/r 2; this

Fig. 7.—Diagram of the strength (vertical axis) vs. shape (horizontal axis) of the near-IR bump. Data are for the same sources as in Fig. 1. Objects with enough data to
determine the bump shape are marked with stars; otherwise, only their bump strengths are marked with arrows on the right. Theoretical results for the halo models
presented in Figs. 5 and 6 are marked with crosses for halos around a 10,500 K star and with T for halos around a 5000 K star (the location of this naked star is marked
with encircled T). Model results for the 10,500 K case are connected with arrowed lines that indicate their path in the diagram when only one parameter is varied, as
marked. Thick lines correspond to p ¼ 2 halos, and thin lines to p ¼ 1.
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differs from the outer halo, which has a 1/r density profile, as
deduced from the 1/r 2 radial brightness profile of theHST image
(Grady et al. 1999; see also eq. [A10] in V03). Conclusions
regarding the properties of the dust grains in the inner halo are
less firm. Near-IR interferometry suggests the presence of dust
close to the star, implying large grains that can survive at small
distances. An example of a big-grains model for AB Aur is
shown in Figure 8 (thick dashed line; see also Table 2). The grain
size and chemistry might be subject to radial variations, as is in-
dicated by comparison between the HST (Grady et al. 1999) and
Subaru images (Fukagawa et al. 2004), further complicating the
modeling.

3.2.2. HD 100546

The HST image of this source (Grady et al. 2001) shows a
very tenuous large-scale nebulosity, whose low surface bright-
ness implies an optical depth of only �V � 0:015. This com-
ponent of the dust distribution does not contribute significantly
to the IR emission and can be ignored in the current analysis. The
HST image, which is produced purely by scattered light, reveals
also a prominent disk with inclination angle 49� � 4�. Near-IR
(Augereau et al. 2001) andmid-IR (Liu et al. 2003) imaging give
similar results for the disk, even though the latter is produced
purely by dust emission and the former contains amixture of both
scattering and emission. The HST brightness contours are sym-
metric, with the brightness declining as 1/r3. These are the sig-
natures of scattering from the CG97 layer of a flat disk (see V03).
However, for the CG97 model to be applicable, every point on
the scattering surface, which extends to a distance of�1000 from
the star, must have a direct line of sight to the stellar surface. This
is impossible in the case of a flat disk, since it would have to
maintain a thickness smaller than the stellar radius for hundreds
of astronomical units. Therefore, the only self-consistent expla-
nation of the HST imaging is with an optically thin halo whose
dimensions are unrelated to the stellar size. The HST image im-
plies that the halo has a flattened geometrical shape, and its 1/r3

brightness profile implies that it has a 1/r 2 radial density profile
(V03). This flattened halo is outlined as region A in Figure 9.
Since the halo dominates the imaging, the geometry of the op-
tically thick disk structure, outlined as region B in the figure, re-
mains unknown.

The HST imaging does not constrain the inner halo geometry
at radii P10 AU. The surface density must be reduced in that
region because the near-IR bump in HD 100546 is significantly
smaller than in AB Aur, even though otherwise the two stars are
rather similar. Indeed, the fit to the near-IR bump yields a 1/r
radial density profile (Fig. 8 and Table 2), shallower than in the
region resolved by HST. The fit was further improved by an in-
creased contribution from large grains (amax ¼ 0:5�mand q ¼ 2)
and a reduced fraction of carbon dust in the mix. Observations by
Grady et al. (2005) show that a constant density profile, creating
1/r brightness profile, might be more appropriate in the region be-
tween 20 and 50 AU.We find that a constant density model could
also fit the near-IR spectrum if the sublimation temperature were
increased to 1700K. All these results point toward large structural
differences between the inner and outer regions of HD 100546.

3.2.3. HD 163296

The model properties of the inner halo in this source are very
similar to AB Aur, except that a shallower density profile of
p ¼ 1 is preferred (see Table 2). A similar general conclusion is
that the halo radial density profile is between 1/r and 1/r 2, with
uncertainties in the dust properties. Significantly, in this source
the inner halo also fits the 10 �m feature all by itself (Fig. 8). No

Fig. 8.—Models for the near-IR bumps in AB Aur, HD 100546, and HD
163296. Points and thin solid lines are the data (see x 2).Measurement uncertainties
in the near-IR are comparable to the symbol sizes. Thick solid lines are the models,
comprised of the stellar component (dotted lines) and a halo contribution (dash-
dotted lines); see text and Table 2 for model details. In the case of ABAur, the thick
dashed line is the second model listed in Table 2. Only data at wavelengths shorter
then 6 �mwere employed in the fits, since in this study we consider only the inner
halo responsible for the near-IR bump. Longer wavelengths (gray area) are dis-
played to show the halo contribution to the mid-IR features; in HD 163296 this
contribution suffices to explain the observed 10 �m feature.
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other optically thin components are required for explaining the
mid-IR dust features, and indeed none are observed. The HST
image, which is incapable of resolving the inner halo, shows no
evidence of a large-scale structure other than the disk, with an
inclination of 60� � 5� (Grady et al. 2000), in agreement with
�58� derived frommillimeter observation (Mannings & Sargent
1997). Another noteworthy feature of theHST image is a bipolar
jet. The process responsible for jet formation could perhaps also lift
up dust above the disk and create the small-scale halo responsible
for the near-IR bump. Such a possible correlation between jets and
the near-IR bump can be studied further when additional high-
resolution data from a larger sample of objects become available.

3.3. Size-Luminosity Correlation

The milliarcsecond resolution reached in near-IR interfer-
ometry enables studies of the immediate environment of young
stars, down to 0.1 AU (Malbet 2003). Unfortunately, current
visibility data are not yet capable of reproducing the full two-
dimensional image of an object, instead requiring a model of the
geometry for their analysis. One simple and often used model of
the circumstellar geometry is a flat dust ring of uniform surface
brightness. This ad hoc model did not arise from some specific
radiative transfer modeling but rather chosen as a simple ap-
proach to the visibility fitting procedure.

Fitting the visibility data of a number of objects with this ring
model, Monnier & Millan-Gabet (2002) discovered that the size
of the ring inner radius increased with the stellar luminosity L�.
This is the expected result when dust sublimation controls the
size of the dustfree region around the star. Since radiative transfer
is scale invariant (Ivezić & Elitzur 1997), inner radii of rings
would be expected to scale as L1/2� if their dust properties were the

same. However, Monnier & Millan-Gabet (2002) do not find
such a trend. Instead, at a fixed luminosity the derived radii vary
by almost a factor of 10, which they refer to as scatter in the size-
luminosity diagram. This scatter indicates either that the disk
inner regions have vastly different properties, with the sublima-
tion temperature varying from �1000 to �2000 K, or that the
ring model is not a proper description of the actual dust distri-
bution. Monnier & Millan-Gabet (2002) also noted that some
highly luminous objects (L�k 103 L�) had smaller than expected
inner ring radii, thus requiring even higher dust sublimation
temperatures. New interferometric data by Monnier et al. (2005)
slightly reduce the scatter in the ring-radius–luminosity relation,
but the remaining scatter still implies a large range of sublimation
temperatures, and very luminous objects still display abnormally
small radii.
Instead of the ring model we have analyzed the interferometry

results with the inner halo model, performing simultaneous fits
of both the near-IR bump and visibility data. Preliminary results
are shown in Figure 10. It is highly significant that there are no
objects in the forbidden region below the indicated lower limits.
The correlation of overall bolometric luminosity with inner ra-
dius is much tighter than in the ring model, the small remain-
ing scatter arises from variation in halo optical depth and grain
size. In contrast with the ringmodel, the sublimation temperature
rarely differs from 1500 K (it is 1800 K in a couple of objects).
The high-luminosity object MWC297, which was especially
troubling in the Monnier &Millan-Gabet (2002) analysis, is now
consistent with 1500 K sublimation temperature. It is striking
how some of the objects that were highly scattered in the diagram
by Monnier & Millan-Gabet (2002) now settle on the same L1/2�
size-luminosity relation (Fig. 10, dotted line), indicating similarities

TABLE 2

Halo Model Parameters for Three Case Studies of Herbig Ae Stars

Object

(1)

T�
(K)

(2)

AV

(K)

(3)

Tsub
(4)

�V
(5)

�

(6)

Rin

(AU)

(7)

Fbol

(10�10 W m�2)

(8)

Grain Radius

(�m)

(9)

Carbon

(%)

(10)

Olivine

(%)

(11)

AB Aur ................ 9750 0.35 1500 0.35 r�2 0.78 0.9 q = 3.5, amax = 0.25 40 60

AB Aur ................ 9750 0.35 1800 0.35 r�2 0.25 0.9 q = 3.5, amax = 5.0 40 60

HD 100546 .......... 10,500 0.3 1500 0.35a r�1 0.45 0.8 q = 2, amax = 0.50 10 90

HD 163296 .......... 9500 0.3 1500 0.25 r�1 0.61 0.9 q = 3.5, amax = 0.25 30 70

Notes.—Col. (2): T�, stellar temperature; col. (3): AV , reddening toward the star by dust other than the inner halo; col. (4): Tsub, dust sublimation temperature; col. (5):
�V , visual optical depth of the halo; col. (6): �, radial dust density profile of the halo; col. (7): Rin, halo inner radius determined from dust sublimation. The halo outer radius
is 10Rin. Col. (8): Fbol, total bolometric flux; col. (9): grain radius, dust size distribution a�q between minimum amin ¼ 0:005 �m and maximum amax. Cols. (10)–(11):
Amorphous carbon properties are from Hanner (1988), and olivine from Dorschner et al. (1995) (with x ¼ 0:4).

a HD 100546 is modeled with a flattened halo, which does not contribute to the circumstellar reddening because the dust is out of the line of sight toward the star
(see Fig. 9).

TABLE 3

Estimated Disk Inclination Angles for AB Aur

Wavelengths

Inclination

(deg) Source

Visual ............................ P45 Grady et al. (1999)

Near-IR.......................... P30 Eisner et al. (2003, 2004)

30 � 5 Fukagawa et al. (2004)

Mid-IR........................... 55 � 10 Liu et al. (2005)

Millimeter...................... 17þ6
�3 Semenov et al. (2005)

21:5þ0:4
�0:3 Corder et al. (2005)

33 � 10 Piétu et al. (2005)

�76 Mannings & Sargent (1997)

Fig. 9.—Sketch of the circumstellar geometry indicated by imaging obser-
vations of HD 100546 (Grady et al. 2001, 2005; see x 3.2.2). Region A is an
optically thin dust layer, dominating the near-IR flux. The disk, marked with B,
is cooler and does not affect the near-IR wavelengths. Both regions A and B are
embedded in an optically thin dusty envelope, marked with checkered pattern,
whose optical depth is so small that its contribution, too, to the near-IR flux is
negligible.
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in the halo properties of all these stars, and in turn pointing
toward a common physical mechanism of halo formation.

4. CONCLUSIONS

An examination of the puffed-up disk rim model (DDN01)
shows that it has rather limited capabilities in explaining the
near-IR bump of Herbig Ae/Be stars. The observed level of near-
IR excess implies a certain emitting volume of optically thin
puffed-up disk rim surface for given dust properties. The volume
derived from the DDN01 model falls short of this observational
limit, unless the disk is made of perfectly gray dust. The puffed-
up rim produces enough near-IR flux only when the inner disk
consists purely of dust grains larger than �0.5 �m and the disk
puffing reaches values ofHrim/Rrimk0:15.Models byDullemond
& Dominik (2004) show that even traces of small grains inhibit
the disk puffing, eliminating the DDN01 model as a viable ex-
planation of the near-IR bump. Since the 10 �m emission fea-
ture indicates the presence of small grains in the circumstellar dust,
additional mechanisms must be invoked to remove all small
grains from the inner disk and keep the DDN01 model viable.

From fits to the SED of a number of HAEBEs, Dominik et al.
(2003) conclude that the infrared excess in these stars is produced
by disks alone without the need for additional circumstellar
components. This conclusion is invalidated by the mathematical
proof that a fit to the SED cannot distinguish between the surface

of a flared disk and an optically thin halo (V03). Fits to the SED
alone are not a conclusive proof of a particular dust geometry.

We find that the optically thin dusty halos around the disk
inner regions whose existence has been inferred in various ob-
servations readily explain the strength and shape of the near-IR
bump. The halo is not limited by the disk properties. Hence, it
can extend above the disk surface and accommodate the emitting
optically thin dust volume required by the near-IR flux obser-
vations. The required halo is rather small, less than several as-
tronomical units in size, and its optical depth in the visual is less
than �0.4. Despite its small optical depth, the halo dominates
the near-IR spectrum and hides the disk near-IR signature. How-
ever, detailed properties of the halo, such as its exact shape, grain
properties, or dust density profile, are not uniquely constrained
by the SED, since different combinations of the parameters can
produce the same flux. These degeneracies can be broken only
with imaging capable of resolving the disk inner regions.

Inner halos not only explain the near-IR bump but also
successfully resolve the puzzle presented by the relations be-
tween luminosities and near-IR interferometric sizes (Monnier
&Millan-Gabet 2002). In addition to their near-IR emission, the
halos contribute also to the mid-IR flux. HD 163296 is an ex-
treme example where the halo in itself fully explains the mid-IR
dust features without the need for additional extended compo-
nents (Fig. 8). The absence of such components in the HST im-
age of this source is another success of the inner halo model. In
general though, the inner halo emission is not expected to dom-
inate the mid-IR but still make a significant contribution that must
be included in fits to the overall SED for reliable modelling of
the rest of the circumstellar material. Recently, van Boekel et al.
(2003) suggested that differences in the strength and shape of
the mid-IR silicate feature in HAEBEs are evidence for dust set-
tling in the disk. However, these differences could instead reflect
halo evolution, with the most active stars showing the strongest
mid-IR signature of the inner disk halo. High-resolution im-
aging is necessary for definite conclusions about the evolution
either of the dust or the circumstellar disk. Such imaging will
soon become available from the VLTI, which offers milliarc-
second resolution at near-IR.
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APPENDIX A

APPROXIMATE SOLUTION FOR THE RIM RADIUS

The observed emission from a puffed up inner disk depends on the rim radius, height, and surface brightness (see x 2.2). Deriving the rim
radius requires a proper treatment of the rim temperature structure.As already noted byDullemond (2002), in gray dust the diffuse radiation
creates a temperature inversion—the dust temperature is maximum in the rim interior (that is, atR > Rrim), not on the rim surface. Here we
derive an approximate solution for the dust temperature T0 on the rim surface and the temperature T1 inside the rim at depth �V � 1 from
the surface. The solution demonstrates the inversion effect for gray dust and shows that it does not exist in the nongray case.

Fig. 10.—Size-luminosity diagram for the inner halo model. The sublimation
radius Rin of each displayed object is determined from a simultaneous fit to its
near-IR bump and visibility data. The filled circles mark objects with a dust
sublimation temperature of 1500 K, the empty circles those with 1800 K. Lower
limits on Rin are shown with the solid line for Tsub ¼ 1500 K and the dashed line
for Tsub ¼ 1800 K; they correspond to halos of gray dust and zero optical depth.
The dotted line connects a group of objects that follow closely the Rin / L1/2�
relation, indicating that their inner halos have similar optical depth and dust
properties. The original version of this diagram, constructed from ring-model
visibility analysis, produced a puzzling amount of scatter (see x 3.3) (Monnier &
Millan-Gabet 2002). The inner halo model resolves the puzzle.
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A1. DUST TEMPERATURE T0 ON THE RIM SURFACE

Consider a dust grain on the rim surface. It is heated by the stellar fluxF� and the diffuse flux Fout coming out from the rim interior. For
large optical depths these two fluxes are balanced: F� ¼ Fout. Stellar flux absorbed by the grain is �VF�, where �V is the dust cross
section in visual. Absorbed diffuse flux is �2�IRFout, where �IR is the cross section in the near-IR and the factor 2 accounts for
absorption from 2� sr. The grain emits into 4� sr, so that the energy balance is

�VF� þ 2�IRFout ¼ 4�IR�SBT
4
0 ; ðA1Þ

where �SB is the Stefan-Boltzmann constant. Using F� ¼ Fout, we get

�SBT
4
0 ¼ F�

4
2þ �V

�IR

� �
: ðA2Þ

A2. DUST TEMPERATURE T1 at �V � 1 FROM THE SURFACE

Now consider a dust grain at distance �V � 1 from the surface into the rim. This grain is heated by the attenuated stellar flux
F� exp (��V ) ¼ F� exp (�1), by the diffuse flux from the surface dust between �V ¼ 0 and �1, and by the diffuse flux from the rim
interior. The absorbed stellar flux is �VF� exp (�1). Diffuse contribution from the surface dust layer is �2�IR�SBT

4
0 �IR, where

�IR � �IR /�V is the infrared optical depth of this surface layer. Diffuse heating from the rim interior, described by temperature T1, is
�2�IR�SBT

4
1 . This is a good approximation for gray dust and an overestimate for nongray dust, where that temperature decreases rapidly

with optical depth. The energy balance is

�VF� exp (�1)þ 2�IR�SBT
4
0 �IR þ 2�IR�SBT

4
1 ¼ 4�IR�SBT

4
1 : ðA3Þ

Using T0 from equation (A2) we get the interior temperature

�SBT
4
1 ¼ F�

4
2
�IR
�V

þ 1þ 2
�V
�IR

e�1

� �
: ðA4Þ

Note that the ratio T0/T1 depends only on �IR/�V and is independent of F�.

A3. GRAY AND NONGRAY REGIMES

We consider two distinct opacity regimes: gray when �IR/�V � 1 and nongray when �IR /�VT1. The ratio of the rim surface
temperature T0 and the interior temperature T1 in these two regimes is

T0=T1 ¼ 0:95; ðA5Þ

when �IR/�V ¼ 1 (gray dust), and

T0=T1 � 1:08; ðA6Þ

when �IR/�VT1 (nongray dust).
The gray opacity creates a temperature inversionwith the temperature in the rim interior higher than on its surface. This inversion does

not appear in nongray dust, for which the temperature decreases monotonically with distance from the rim surface. If the maximum dust
temperature is 1500K (sublimation temperature), then gray dust has T1 ¼ 1500K and T0 � 1400K,while nongray dust has T0 ¼ 1500K
and T1P1400 K.

These approximate expressions are in reasonable agreement with the results of exact two-dimensional radiative transfer calculations
(see x 2.3), which yield T0 ¼ 1387 K and T1 ¼ 1490 K for gray dust and T0 ¼ 1500 K and T1 ¼ 1236 K, for 0.1 �m grains.

The transition between these two regimes occurs at grain radius 0.5 �m, which yields T0 ¼ 1474 K, T1 ¼ 1492 K, and the maximum
temperature of 1500 K at �V ¼ 0:34.

A4. DISK RIM RADIUS AND NEAR-IR BUMP STRENGTH

Since the rim optical depth is large, we can assume that both temperatures T0 and T1 are located at essentially the same distance from
the star. If we set T1 to the dust sublimation temperature Tsub, then based on equation (A4), the rim radius is

Rrim ¼ 1

2
R�

T�

Tsub

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�IR
�V

þ 1þ 2
�V
�IR

e�1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Hrim=Rrim

p
; ðA7Þ
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where we usedF� ¼ L� 1þ Hrim/Rrimð Þ1/2/4�R2
rim [the factor 1þ Hrim/Rrimð Þ1/2 is correction for rim self-irradiation, already introduced

by DDN01]. Comparison with equation (4) for the rim radius gives

 ¼ 2

e
þ �IR
�V

1þ 2
�IR
�V

� �
: ðA8Þ

The two extreme opacity regimes yield

 �
1 when �IR=�VT1 (nongray dust)

4 when �IR=�V ! 1 (gray dust)

�
ðA9Þ

This result can also be derived by setting T0 � Tsub. Combining this result with equations (3) and (4) and dividing the overall observed
flux at 2 �m by the stellar flux at 1 �m yields the near-IR bump strength

F2 �m

F1 �m
¼ B2 �m(T�)

B1 �m(T�)
þ T�

Trim

� �4
B2 �m(Trim)

B1 �m(T�)

Hrim

�Rrim

1þ Hrim

Rrim

� �
;

1 nongray dust

4 sin i gray dust

�
; ðA10Þ

where we used the approximation qk � �IR/�V � �̄(Trim)/�̄(T�). This solution shows that nongray dust gives angle-independent bump
strength in addition to reducing its magnitude from the gray dust result.
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